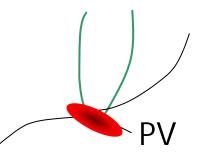
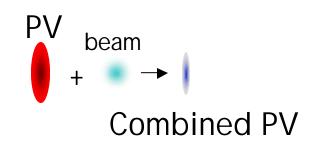
EbE Vertexing for Mixing


Alex For the LBLB group



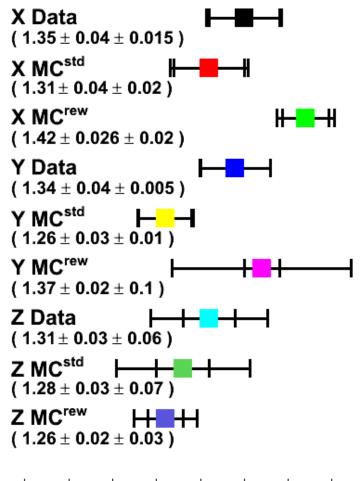
Decay L_{xy} Determination

A 3 step process:

- Determine vertex from tracks in the event (~25µm-ish)
- Apply beamline constraint (~25µm-ish)
- 3. Compute secondary vertex position
- At each step, pulls of the new ingredient must be 1!!!

PV Scale Factor (no beam constr.)

•Scale factor in data is O(1.38)


•Montecarlo after LOO reweighting shows consistent numbers

•Systematics from fit model and across samples available [effect is O(10%)]

•Pull after beamline constraint?

- •Apply beam constraint
- Look at d0 of fully reco'd candidates WRT EbE vertex
- •Affected by:
 - •EbE (PV + beam)
 - Secondary Vertex

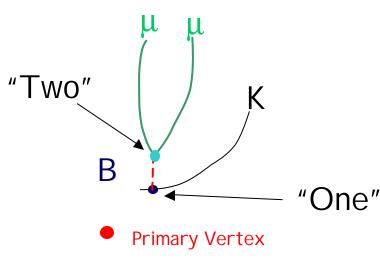
 $\textbf{B} \rightarrow \textbf{J}/\psi \; \textbf{K}^{\star} \; \textbf{V1-V2} \; \textbf{Pull}$

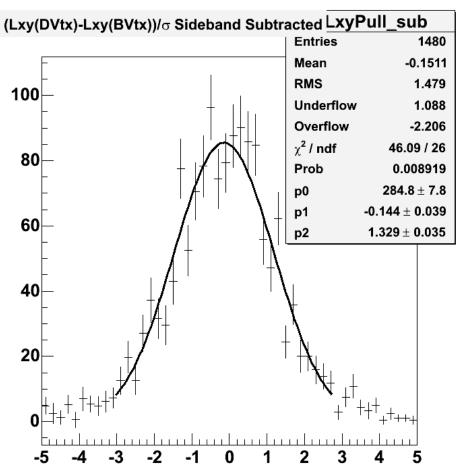
1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

Beamline Constraint

B IP pull [width ± stat ± syst] wrt EbE (full squares) or Beamline (empty circles)

I mpact Parameter Pull w.r.t. beamline/beamline constrained EbE:


- •d₀^{beam} shows ~10-15% deviation from 1
- •d₀^{EbE} Shows O(20%) deviation
- •Where do these come from?
- 1.Beamline [constraint]
- 2.Secondary Vertex res.


 $B \rightarrow D^{\circ} \pi^{+}$ (1.12 ± 0.06 ± 0.04) $\mathbf{B} \rightarrow \mathbf{D}^{\circ} \pi^{+}$ (1.09 ± 0.04 ± 0.02) $B \rightarrow D^{-} \pi^{+}$ (1.13 ± 0.02 ± 0.05 $\rightarrow \mathbf{D}^{-} \pi^{+}$ $1.05 \pm 0.02 \pm 0.01$ $B \rightarrow J/\psi K^{+}$ + (1.11±0.03±0.05 $B \rightarrow J/\psi K^{+}$ (1.23 ± 0.03 ± 0.1) $\mathbf{B} \rightarrow \mathbf{J}/\psi \mathbf{K}^*$ \ominus (1.15±0.03) $B \rightarrow J/\psi K^*$ (1.27 ± 0.03 ± 0.24) 0.9 12 1.3 0.8

Secondary Vertex Scale factor from B decays

Example: $B \rightarrow \psi K^+$

- $\mbox{-}Fit\ \psi$ to a single vertex
- "point" ψ back to K
- •Measure L_{xy} wrt B vertex
- •Pull is a proxy for a "seconday vertex" pull!

The SV scale factor problem

 $B \rightarrow D \; L_{xy}$ pull [width $\pm \; stat \pm \; syst$]

$$\begin{split} & \textbf{B} \rightarrow \textbf{J}/\psi \ \textbf{K}^{*} & \textbf{H} \blacksquare \textbf{H} \\ & (1.21 \pm 0.02 \pm 0.02 \ \textbf{)} \\ & \textbf{B} \rightarrow \textbf{J}/\psi \ \textbf{K}^{*} & \textbf{H} \blacksquare \textbf{H} \end{split}$$

($1.11\pm0.03\pm0.02$)

(1.117 ± 0.005 ± 0.02)

 $\psi' \rightarrow J/\psi \pi \pi$ (0.98 ± 0.015 ± 0.01)

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

- Re-analyzed all samples
- Fixed a couple of bugs...
- Pull grows as a function of lifetime?
- No clear dependency on any other variable spotted
- How does this compare to montecarlo?

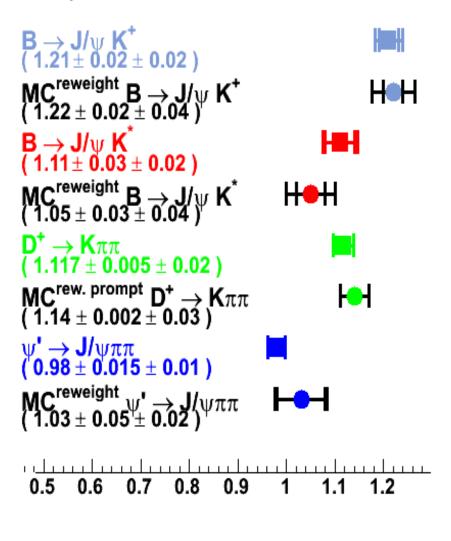
Montecarlo

We compare/complement data with:

- -Toy montecarlo to study pull of fixed kinematics vs $\mathsf{L}_{\mathsf{x}\mathsf{y}}$
- •Several samples:

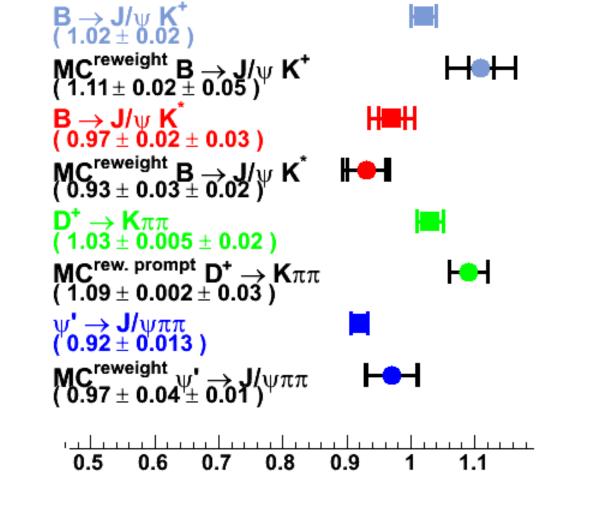
As many of the modes we study on data as possible

•ψ, ψK^{+,} ψK^{*}, D⁺


•Pythia (preferable to evaluate the PV pulls)

•Bgen (suitable for most SV studies)

LOO Reweighting on SV


- •L00 reweighting has a larger effect on SV than PV
- •Effect consistently reproduces our 'problem' on Montecarlo!!!
- •I f we find consistency with data, we can dissect the MC and get another tool to investigate the problem!
- •In the short term we can just use MC to assess the scale factor, with a systematic uncertainty of few %!
- •We can confirm this looking at the impact parameter, rather than $\rm L_{xy}$

 ${\rm B} \rightarrow {\rm D} \; {\rm L_{xy}} \; {\rm pull}$ [width $\pm \; {\rm stat} \pm \; {\rm syst}$]

Cross check: 'B' pion I P

B pion d₀ WRT D vertex pull [width ± stat ± syst]

Picture is consistent with what we see on L_{xy} !!!

Bottomline

- SV scale factor depends on mode (kinematics/topology)
- Montecarlo reproduces the behavior
- We can measure the appropriate scale factor comparing measuredtruth

Conclusions

- We now have a way of assessing all the scale factors involved [O(10-20%) different from 1]
- Aart's measurement of the beamline 'growth' with time needs to be incorporated as well [O(10-15%) effect]
- Putting all together should allow us to obtain a consistent picture with a reasonable systematic [O(10%)]
- Plan is to verify this and document everything!