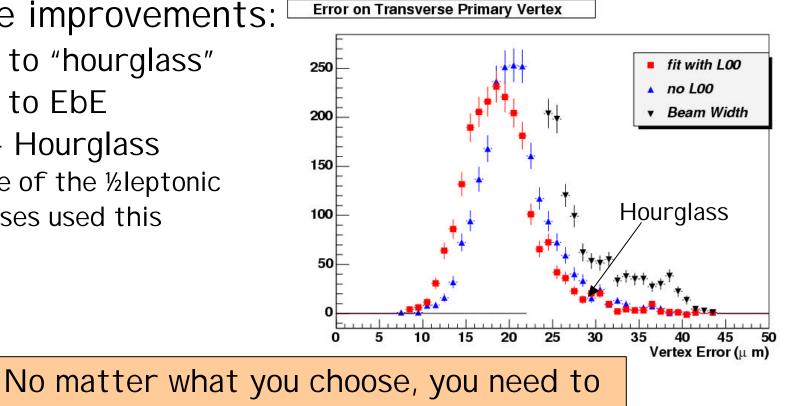
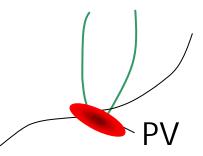
EbE Vertexing for Mixing

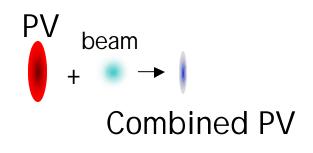

Alessandro Cerri, Marjorie Shapiro

Aart Heijboer, Joe Kroll UPenn

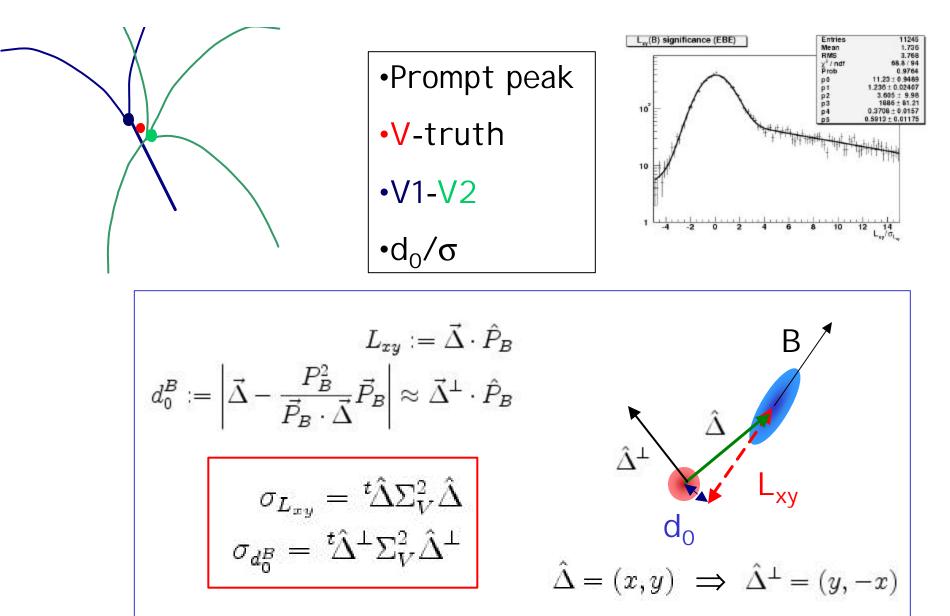
Current status

- EbE: itearative track selection/pruning algorithm to provide an unbiased estimate of the PV position on an Event-by-Event basis
- Hadronic analyses used a flat ~25um beamline!
- Possible improvements:
 - Move to "hourglass"
 - Move to EbE
 - EbE + Hourglass
 - One of the ½leptonic analyses used this

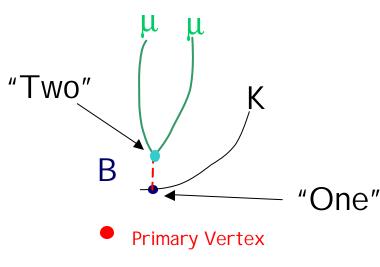


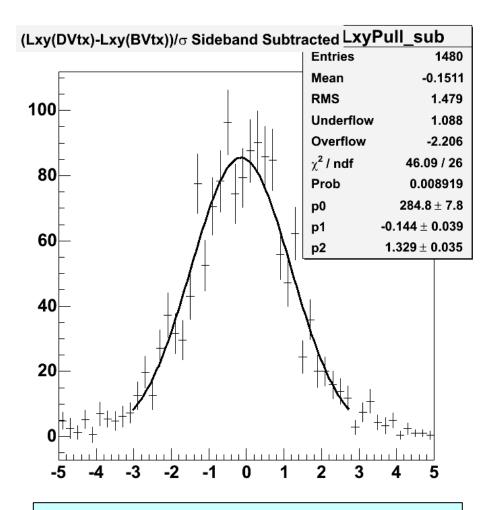

understand your errors (pulls)

Decay L_{xy} Determination with EbE


A 3 step process:

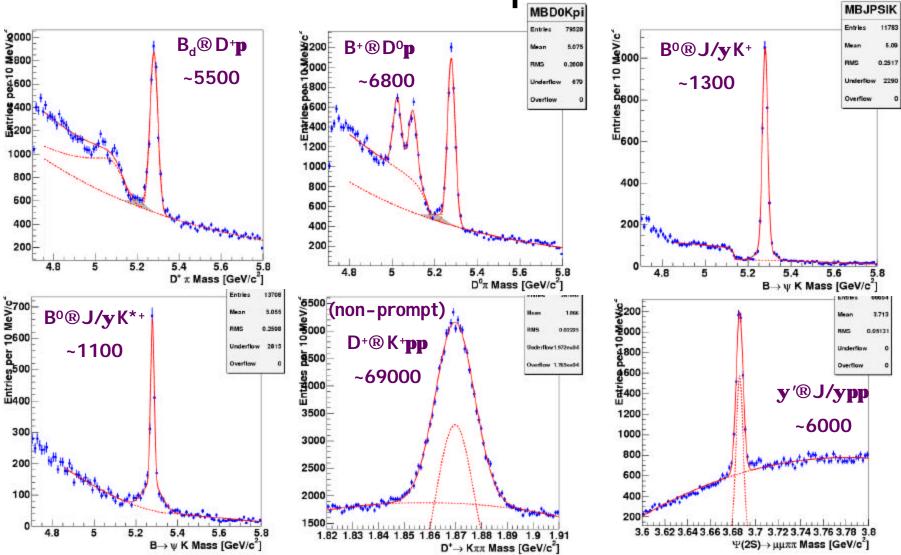
- Determine vertex from tracks in the event (~25µm-ish)
- Apply beamline constraint (~25µm-ish)
- 3. Compute secondary vertex position
- At each step, pulls of the new ingredient must be 1!!!


The tools to check the Pulls!



One more tool for the SV

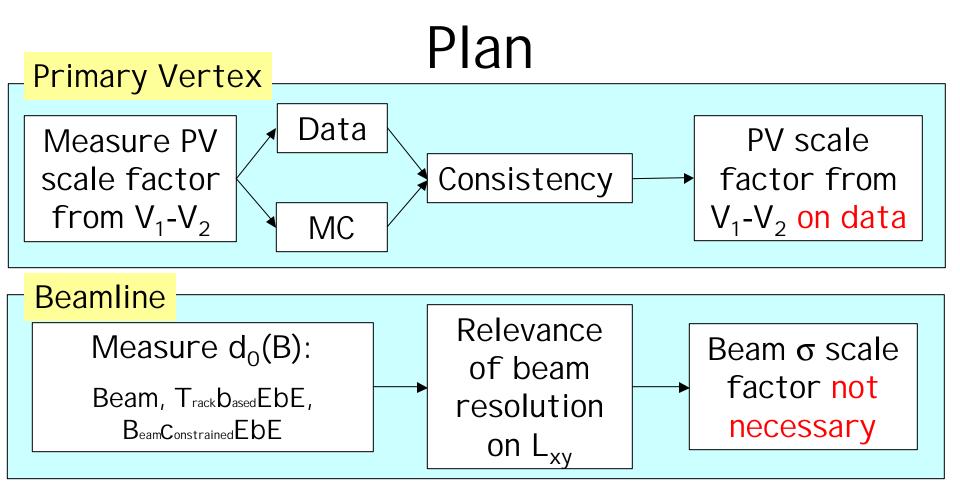
Example: $B \rightarrow \psi K^+$

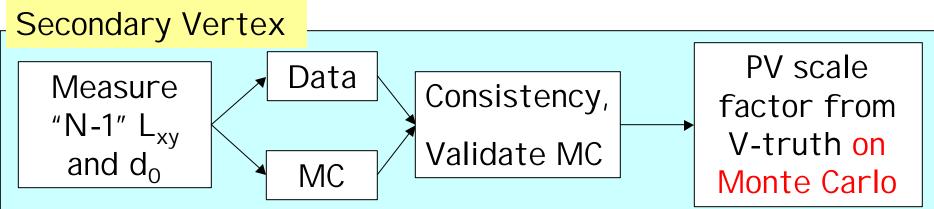

- $\mbox{-}Fit\ \psi$ to a single vertex
- "point" ψ back to K
- •Measure L_{xy} wrt B vertex
- Pull is a proxy for a "seconday vertex" pull!

Tracks' d₀ can be used as cross-check

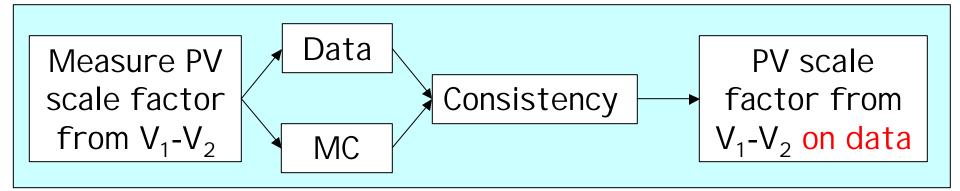
The samples

~15000 fully record B, ~69000 Fully record D+, ~6000 fully record ψ ' (re-running) Montecarlo: mostly BGEN (basically all of the above+B_s), using Pythia if possible


Technicalities (contd.)

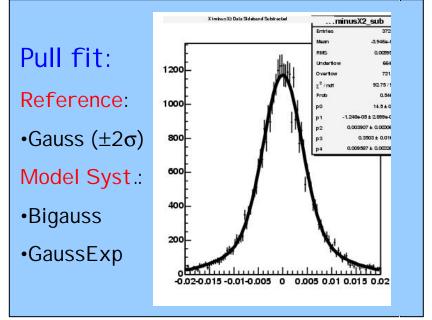

Reconstruction:

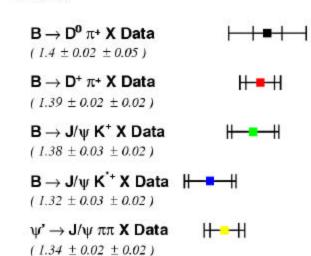
- Based on the ~350pb⁻¹ dataset/ 5.x production
- 6.1.0 CharmMods with CTVMFT "fix" (does not really affect results though)
- Standard tracking requirements (COT+3Si)
- Tight selection cuts to improve S/B


Montecarlo:

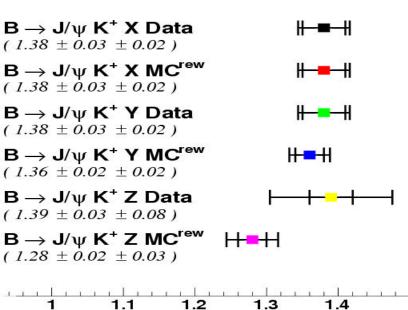
- Using the standard BMC tools plus:
- Stephanie's LOO reweighting
- Kludge (CharmMods/DCalcPri mVertModule) to generate PV based on data histograms for BGEN

Primary Vertex

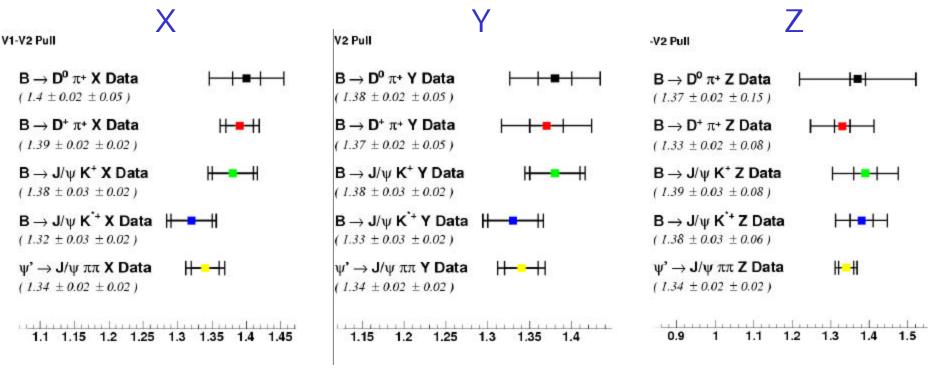

PV Scale Factor (no beam constr.)


•Can be probed directly on data using V_1 - V_2

•Consistent picture in data: O(1.38)

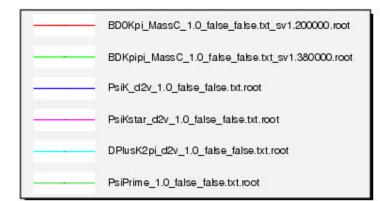

•Monte Carlo after LOO re-weighting shows similar numbers (bottom right)

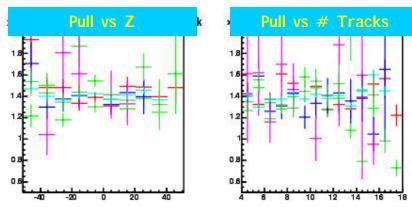
•Measured systematics from fit model and across samples [effect is O(5%)]



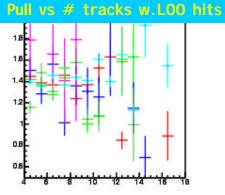
1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

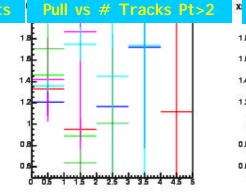
PV scale factor: other plots (X,Y,Z)

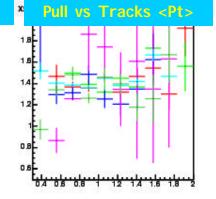


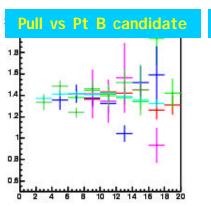

5% Uncertainty

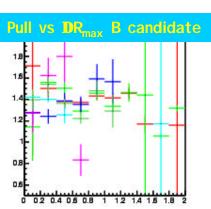

Pull uncertainty is dominated by:

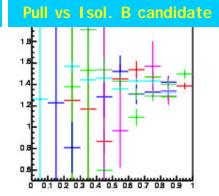

- Variability among samples
- Systematic uncertainty from fit model

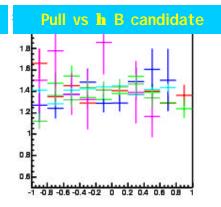

PV scale factor dependencies (X)

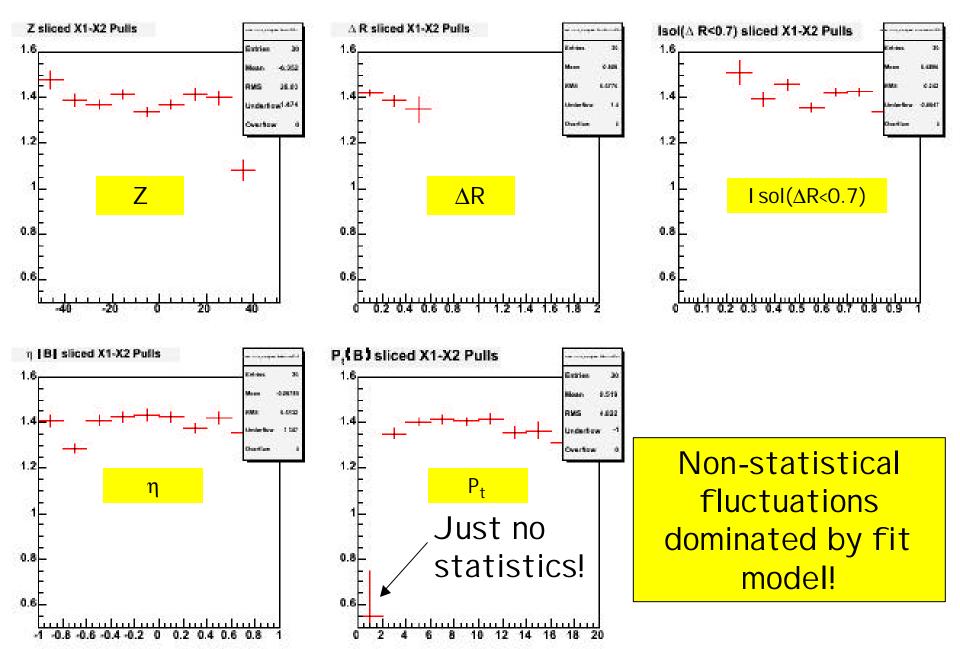


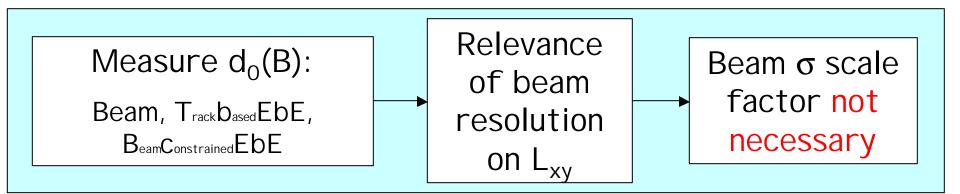











PV scale factor: details (à la CDF7500)

Conclusions on PV

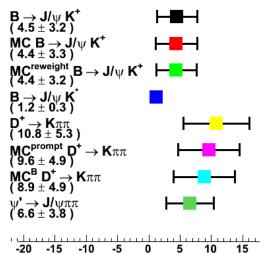
- Scale factor measured on data
- Stable (within 5%):
 - Among samples
 - No evidence of dependencies
- We can move to the next step!

Beamline

d₀(B): properties and limitations

- Three possible ways of measuring PV:
- 1) Beamline
- 2) Track based Primary Vertex (TBPV)
- 3) TBPV constrained to beamline ("EbE")
- What enters in $\sigma(d_0)$:
- a) Beam (1,3)
- b) Secondary vertex (1,2,3)
- c) TBPV (2,3)
- None of (1,2,3) probes only one piece!
- ⊗Regime (relative contribution of a,b,c) differs between (1,2,3) but also between L_{xy} and d₀!

Let's see what happens in a real case...


Limit to the d_0 / L_{xv} analogy

R

SV resolution ellipsoid is elongated and "seen from" different angles by d_0 and L_{xy} !

'D' Vertex error ellipsoid

• anisotropy (mean±RMS)

'D' Vertex error scale [in

^ε 100μm units] (mean±RMS)

 $\mathbf{B} \rightarrow \mathbf{J}/\psi \mathbf{K}^{\dagger}$ (0.95 ± 0.61) MC $B \rightarrow J/\psi K^{+}$ (0.91 ± 0.6) σ_{Lxy} σ_{d0} σ_{Lxy} σ_{d0} $MC^{reweight}_{0.94 \pm 0.6} B \rightarrow J/\psi K^{+}$ $\mathbf{B} \rightarrow \mathbf{J}/\psi \mathbf{K}^{2}$ (0.96 ± 0.9) 23 27 PV 1 / $D^+ \rightarrow K\pi\pi$ (2.4 ± 0.9) ----- $(2.3 \pm 0.9)^{+} \rightarrow K\pi\pi$ SV 36 36 12 12 $\begin{array}{c} \mathbf{MC}^{\mathsf{B}} \ \mathbf{D}^{\mathsf{+}} \xrightarrow{} \mathbf{K} \pi \pi \\ (2.3 \pm 0.9) \end{array}$ $\psi' \rightarrow J/\psi \pi \pi$ (1.2 ± 0.62) Sum 27 45 21 43 -4 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 d_0 and L_{xy} probe different regimes of σ_{PV}/σ_{SV} : d_0 dominated by PV, L_{xv} dominated by SV

Beam Constrained Not Beam Constrained

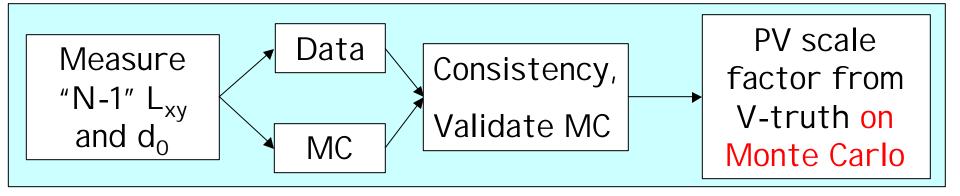
Back to d_0 : Comparison among samples and with MC Track based EbE Beamline EbE (with beam constr.) $\mathbf{B} \rightarrow \mathbf{D}^{\circ} \pi^{+}$ $B \rightarrow D^{\circ} \pi^{+}$ $\mathbf{B} \rightarrow \mathbf{D}^{\circ} \pi^{+}$ $(0.98 \pm 0.015 \pm 0.01)$ $(1.17 \pm 0.02 \pm 0.02)$ $(1.13 \pm 0.02 \pm 0.02)$ $B \rightarrow D^{-}\pi^{+}$ $B \rightarrow D^{*}\pi^{+}$ H $(1.15 \pm 0.02 \pm 0.02)$ $(1.06 \pm 0.015 \pm 0.016)$ $\mathbf{B} \rightarrow \mathbf{D}^{-} \pi^{+}$ $B \rightarrow J/\psi K^*$ $B \rightarrow J/\psi K^*$ H $(1.15 \pm 0.02 \pm 0.02)$ $(1.13 \pm 0.02 \pm 0.02)$ $(1.05 \pm 0.02 \pm 0.03)$ $MC^{reweight} B \rightarrow J/\psi K^*$ ю $B \rightarrow J/\psi K^+$ $B \rightarrow J/\psi K$ ╟╋╋┥ $(1.04 \pm 0.02 \pm 0.03)$ $(1.12 \pm 0.03 \pm 0.02)$ $(1.23 \pm 0.03 \pm 0.05)$ $B \rightarrow J/\psi K^*$ hal $(1.09 \pm 0.03 \pm 0.02)$ $MC^{reweight} B \rightarrow J/\psi K$ HOH $B \rightarrow J/\psi K$ - $MC^{reweight} B \rightarrow J/\psi K^* \Theta$ $(1.05 \pm 0.02 \pm 0.02)$ $(0.97 \pm 0.02 \pm 0.02)$ $(1.19 \pm 0.03 \pm 0.02)$ $\psi' \rightarrow J/\psi \pi \pi$ $y' \rightarrow J/\psi \pi \pi$ $(1.15 \pm 0.01 \pm 0.02)$ $(1.22 \pm 0.02 \pm 0.02)$ $\psi' \rightarrow J/\psi \pi \pi$ $MC^{reweight} \psi' \rightarrow J/\psi \pi \pi \vdash \bigcirc$ $\text{MC}^{\text{reweight}} \psi' \rightarrow J/\psi \pi \pi$ Θ $(1.23 \pm 0.02 \pm 0.02)$ $(0.99 \pm 0.03 \pm 0.02)$ $(1.03 \pm 0.03 \pm 0.02)$ dan hadan hadan hadan ha 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 0.7 0.8 0.9 1.05 1.1 1.15 1.2 1.25 1.3 1 1.1 1 Beamline and SV Beamline and SV SV

Source of deviations from 1

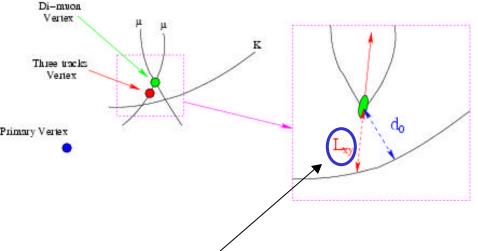
Evidences of underestimate of beamline and SV errors!

Why blow-up on the beamline does not concern L_{xy}

- •Back-of-the-envelope calculations:
 - •Typical 'long run'
 - •I nitial and final luminosities
 - •On-line (SVT) beam width measurement confirms estimate
 - •Tested on single run
- Why it is of marginal relevance:
- •Using 'average beam width' attenuates the effect: $30\% \rightarrow 20\%$:


	σ [μm]	Pull [%]
L _{xy}	+0.5	+2%
d _o	+2	+6%

Other sources not investigated, however: not much of a concern for L_{xy^\prime} relevant for d_0


Bottom line

- d₀ pulls show effect of non unitarity of:
 - Beamline pulls
 - Secondary vertex pulls
- Restoring beamline pulls' unitarity is of marginal (2%) relevance for Lxy
- Let's move on to the secondary vertex!

Secondary Vertex

"N-1" L_{xy} : data and MC $B \rightarrow D L_{xy}$ pull [width ± stat ± syst]

•Computed L_{xy} pulls for the various samples

- Compared to MC evaluation
- •Pretty good agreement!

•MC seems to account for (possible) inter-sample variations and absolute scale of pulls! $\textbf{B} \rightarrow \textbf{J}/\psi~\textbf{K}^{+}$ ($1.21 \pm 0.02 \pm 0.02$)

 $\begin{array}{l} \textbf{MC}^{reweight} \; \textbf{B} \rightarrow \textbf{J}/\psi \; \textbf{K}^{\star} \\ (\; 1.22 \; \pm 0.02 \; \pm 0.04 \;) \end{array}$

 $\begin{array}{c} \textbf{B} \rightarrow \textbf{J}/\psi \; \textbf{K}^{\star} \\ (\; 1.19 \; \pm \; 0.03 \; \pm \; 0.01 \;) \end{array}$

 $D^+ \rightarrow K\pi\pi$ (1.117 ± 0.005 ± 0.02)

 $\begin{array}{c} \mathbf{MC^{rew.\ prompt}\ D^{+} \rightarrow K\pi\pi} \\ (1.14 \ \pm 0.002 \ \pm 0.03 \) \end{array}$

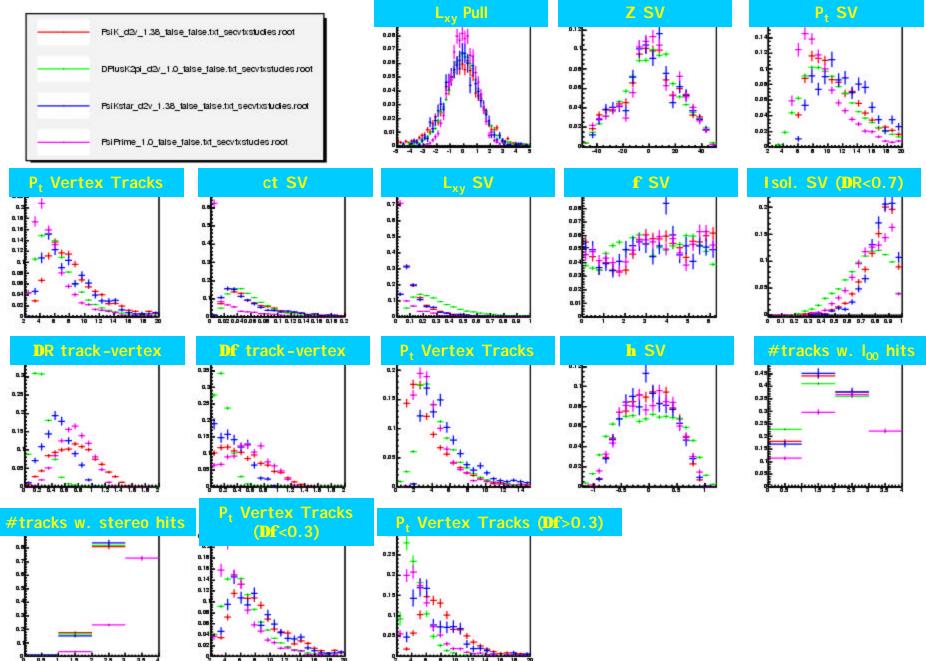
 $\psi' \rightarrow \mathbf{J}/\psi \pi \pi$ $(0.98 \pm 0.015 \pm 0.01)$

 $\begin{array}{ll} \mathbf{MC}^{\mathsf{reweight}} & \psi' \rightarrow \mathbf{J}/\psi \pi \pi & \mathbf{I} \\ (1.03 \pm 0.05 \pm 0.02) \end{array}$

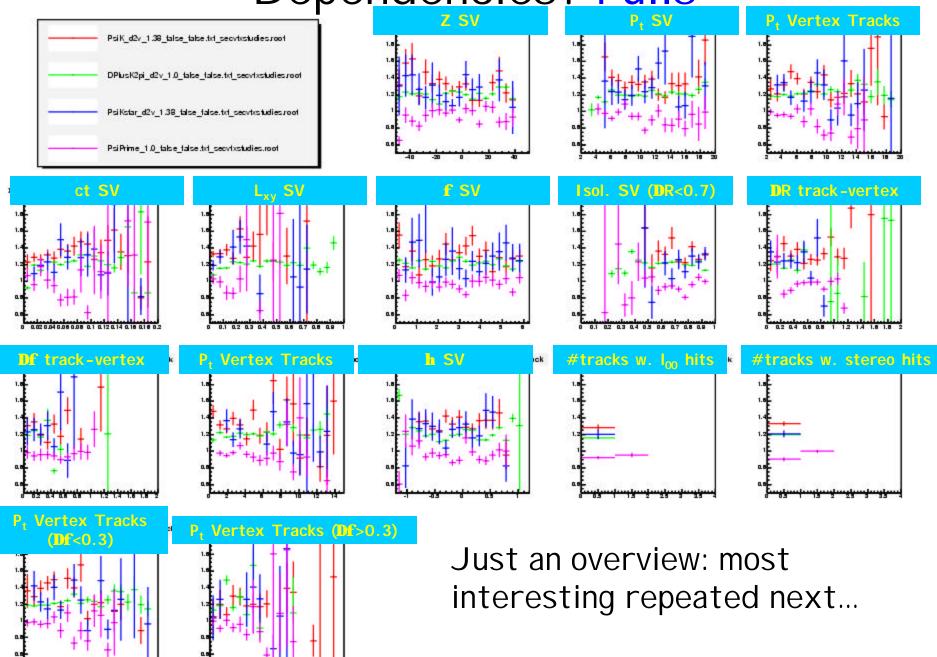
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

 Θ

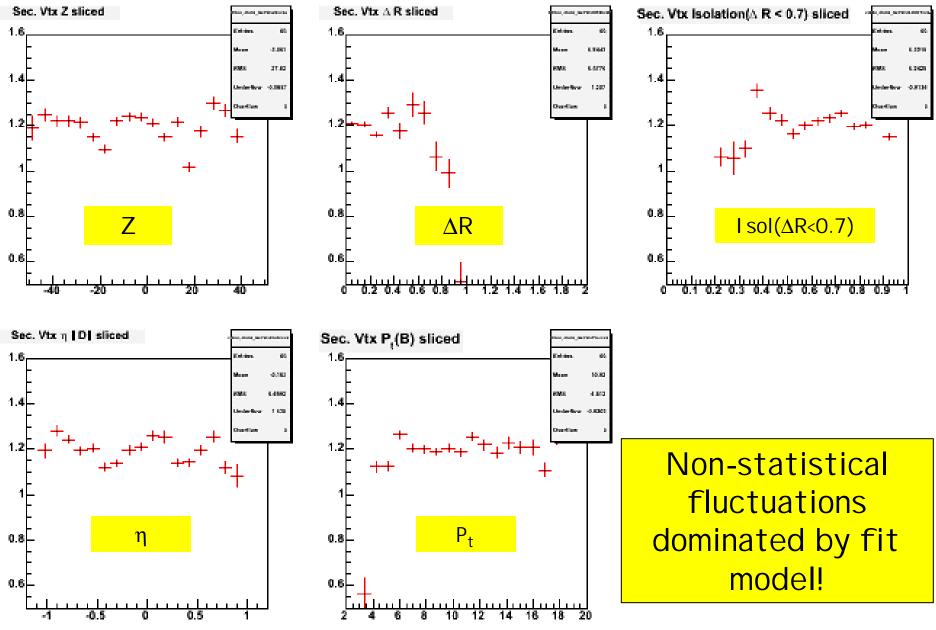
Dependencies


Look for evidence of dependencies on geometry, kinematics etc:

• Pick a suitable set of variables:

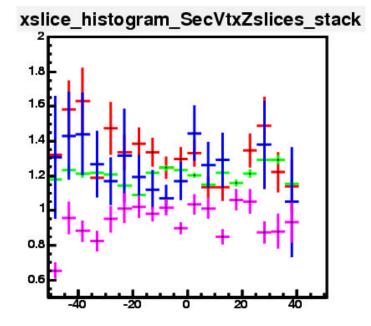

Z of SV Pt of SV Combined Pt of tracks in SV Ct of SV L_{xy} of SV ϕ of SV I solation of candidate B (Δ R<0.7) Δ R single track-rest of vertex $\begin{array}{l} \Delta \phi \mbox{ single track-rest of vertex} \\ Pt \mbox{ of single track} \\ \eta \mbox{ of SV} \\ \# \mbox{ tracks with } L_{00} \mbox{ hits in SV} \\ \# \mbox{ tracks with stereo hits in SV} \\ \mbox{ Combined Pt of tracks in SV } (\Delta \phi < 0.3) \\ \mbox{ Combined Pt of tracks in SV } (\Delta \phi > 0.3) \end{array}$

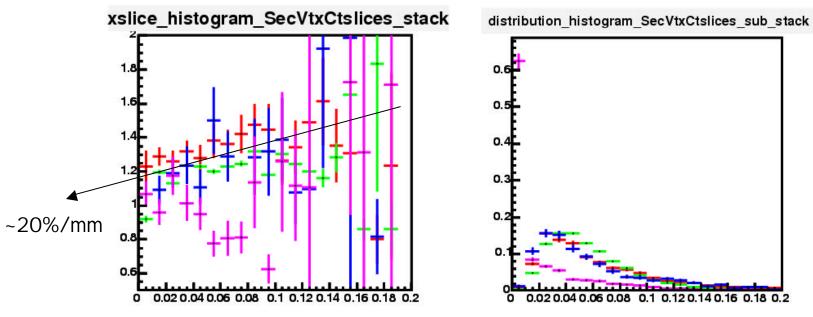
- Compare how various samples probe them
- Check pull vs variables


How different are distributions among samples?

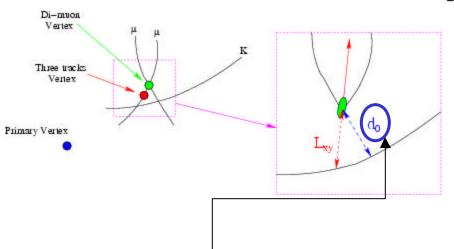
Dependencies? Pulls

SV scale factor: details (à la CDF7500)




Selected Plots

•We expect some variation as a function of Z (for instance, because of detector structure)


•Ct dependence?

•All variations well within $\pm 10\%$ when integrated over kinematics

"N-1" d₀: a cross check!

- •Compute also d_o pulls for the various samples
- •Compare to MC evaluation
- •Pretty good agreement here as well!

•Good job with the realistic simulation+reweighting!

B pion d_o WRT D vertex pull [width \pm stat \pm syst]

 $\begin{array}{c} \textbf{B} \rightarrow \textbf{J}/\psi \; \textbf{K}^{+} \\ (\; 1.02 \; \pm 0.02 \;) \end{array}$

 $\begin{array}{l} \textbf{MC}^{\text{reweight}} \textbf{B} \rightarrow \textbf{J/\psi} \textbf{K}^{+} \\ (1.13 \pm 0.02 \pm 0.07) \end{array}$

 $\mathbf{B} \rightarrow \mathbf{J}/\mathbf{\psi} \mathbf{K}^{\star}$ $(1.04 \pm 0.03 \pm 0.04)$

╟╋═╫┨

H

H

 $\begin{array}{c} \textbf{MC}^{\text{reweight}} \textbf{B} \rightarrow \textbf{J}/\psi \textbf{K}^{*} \\ (0.92 \pm 0.02 \pm 0.02) \end{array}$

 $D^{+} \rightarrow K\pi\pi$ $(1.03 \pm 0.005 \pm 0.02)$

 $\begin{array}{c} \mathbf{MC^{rew.\ prompt\ }D^{+} \rightarrow K\pi\pi} \\ (1.09 \pm 0.002 \pm 0.03) \end{array}$

 $\psi' \rightarrow \mathbf{J}/\psi\pi\pi$ (0.92 ± 0.013)

 $\mathbf{MC}^{\text{reweight}} \psi' \rightarrow \mathbf{J}/\psi \pi \pi$ $(0.97 \pm 0.04 \pm 0.01)$

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

SV scale factor from MC

Now that we know to what extent we can rely on MC, let's look at reconstructed-truth!

 $SV_{reco}-SV_{truth}$: X $SV_{reco}-SV_{truth}$: Y $SV_{reco}-SV_{truth}$: Z $(1.16 \pm 0.02 \pm 0.15)$ $(1.15 \pm 0.02 \pm 0.1)$ $(1.21 \pm 0.02 \pm 0.2)$ $\begin{array}{c|c} \mathbf{MC}^{\mathsf{reweight}} \mathbf{B} \to \mathbf{D}^{\mathsf{-}} \pi^{\mathsf{+}} & & & \\ (1.13 \ \pm 0.02 \ \pm 0.15 \) & & \\ \end{array}$ $(1.22 \pm 0.02 \pm 0.2)$ $(1.18 \pm 0.02 \pm 0.2)$ $MC^{reweight} \xrightarrow{} B \rightarrow J/\psi \xrightarrow{} K^{+}$ $MC^{reweight} B \rightarrow J/\psi K^{+}$ $MC^{reweight} B \rightarrow J/\psi K^{+}$ $(1.22 \pm 0.03 \pm 0.01)$ $(1.15 \pm 0.03 \pm 0.05)$ $(1.28 \pm 0.03 \pm 0.01)$ $MC^{reweight} B \rightarrow J/\psi K^{*}$ $MC^{reweight} B \rightarrow J/\psi K^{*}$ $MC^{reweight} B \rightarrow J/\psi K^{*}$ Θ $(1.21 \pm 0.03 \pm 0.01)$ $(1.21 \pm 0.03 \pm 0.01)$ $(1.12 \pm 0.02 \pm 0.01)$ $MC^{rew. prompt} D^{+} \rightarrow K\pi\pi$ $MC^{rew. prompt} D^{+} \rightarrow K\pi\pi$ $MC^{rew. prompt} D^{+} \rightarrow K\pi\pi$ Ħ $(1.11 \pm 0.01 \pm 0.1)$ $(1.12 \pm 0.01 \pm 0.1)$ $(1.16 \pm 0.01 \pm 0.01)$ **MC**^{reweight} $\psi' \rightarrow J/\psi \pi \pi$ $MC^{reweight} \psi' \rightarrow J/\psi \pi \pi$ $MC^{reweight} \psi' \rightarrow J/\psi \pi \pi$ $(1.14 \pm 0.03 \pm 0.01)$ $(1.2 \pm 0.03 \pm 0.05)$ $(1.08 \pm 0.03 \pm 0.01)$ $MC^{reweight} B_s \rightarrow D_s \pi$ $MC^{reweight} B_s \rightarrow D_s \pi$ $MC^{reweight} B_s \rightarrow D_s \pi$ Θ Θ $(1.24 \pm 0.01 \pm 0.05)$ $(1.21 \pm 0.01 \pm 0.07)$ $(1.16 \pm 0.01 \pm 0.02)$ harden harden berek Innhadaahaahaahaahaahaahaah

0.2

0.4

0.6

0.8

1

1.2

0.4

0.6

0.8

1.2

1

1.4 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

SV scale factor from MC

...projected along P_t, and broken down into PV and SV contribution:

L_{xy}^{reco}-L_{xy}^{truth} $MC^{reweight} B \rightarrow D^{\circ} \pi^{+}$ $(1.14 \pm 0.01 \pm 0.04)$ $(1.12 \pm 0.02 \pm 0.11)$ $MC^{reweight} B \rightarrow J/\psi K^{+}$ $(1.12 \pm 0.03 \pm 0.05)$ $MC^{reweight} B \rightarrow J/\psi K^{\star}$ $(1.15 \pm 0.03 \pm 0.01)$ $\mathsf{MC}^{\mathsf{rew. prompt}} \mathsf{D}^{\mathsf{+}} \to \mathsf{K}\pi\pi \hspace{0.1cm} \longmapsto \hspace{0.1cm}$ $(1.16 \pm 0.01 \pm 0.15)$ $MC^{reweight} \psi' \rightarrow J/\psi \pi \pi$ $(1.14 \pm 0.02 \pm 0.01)$ $MC^{reweight} B_s \rightarrow D_s \pi$ $(1.17 \pm 0.01 \pm 0.03)$

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

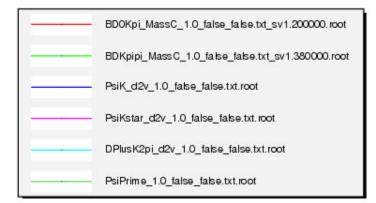
-xy reco_L_truth: PV				
MC ^{reweight} B \rightarrow D ° π^{+} (1.04 \pm 0.02 \pm 0.07)	<u> </u>	N (
$ \begin{array}{l} \mathbf{MC}^{reweight} \ \mathbf{B} \rightarrow \mathbf{D}^{-} \pi^{+} \\ (1.03 \pm 0.02 \pm 0.01) \end{array} $	ŀ↔	N (
$\begin{array}{l} \textbf{MC}^{\text{reweight}} \; \textbf{B} \rightarrow \textbf{J}/\psi \; \textbf{K}^{*} \\ (\; \textit{1.01} \pm \textit{0.02} \; \pm \textit{0.01} \;) \end{array}$	F⇔I	N (
$\begin{array}{l} \textbf{MC}^{\text{reweight}} \textbf{B} \rightarrow \textbf{J}/\psi \textbf{K}^{*} \\ (\ 1.02 \ \pm 0.02 \ \pm 0.02 \) \end{array}$	H <mark>→</mark> H	N (
$ \begin{array}{l} \textbf{MC}^{\text{reweight}} \; \textbf{B}_{s} \rightarrow \textbf{D}_{s} \pi \\ (\; 1.02 \; \pm 0.01 \; \pm 0.01 \;) \end{array} $	₩	N (
0.75 0.8 0.85 0.9 0	95 1 1.05 1.1	_		

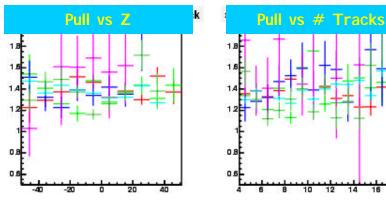
L_reco_L_tr	uth: SV
$ \mathbf{MC}^{reweight} \mathbf{B} \to \mathbf{D}^{\circ} \pi^{+} $	┝───┤
$ \begin{array}{l} \mathbf{MC}^{reweight} \ \mathbf{B} \rightarrow \mathbf{D}^{r} \pi^{+} \\ (1.19 \pm 0.02 \pm 0.02) \end{array} $	Ð
	Φ
$\begin{array}{l} \textbf{MC}^{\text{reweight}} \textbf{B} \rightarrow \textbf{J}/\psi \textbf{K}^{*} \\ (\ 1.14 \ \pm 0.02 \ \pm 0.01 \) \end{array}$	Ø
$\begin{array}{l} \mathbf{MC}^{reweight} \; \mathbf{B}_{s} \rightarrow \mathbf{D}_{s} \pi \\ (\; 1.22 \; \pm 0.01 \; \pm 0.01 \;) \end{array}$	Ħ
0.4 0.6 0.8	1 1.2 1.4

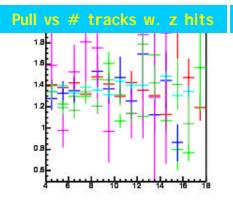
•Amazingly stable and consistent with X, Y and Z!

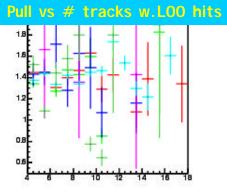
•Variations well within 10%

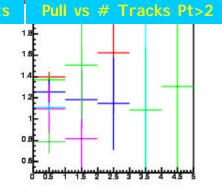
SV Pull Strategy

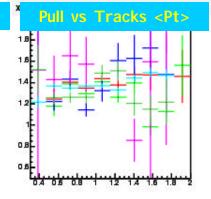

- "N-1" d_0 and L_{xy} validate montecarlo
- Dependencies studied in "N-1" d₀/L_{xy} are mostly due to choice of variables (to be confirmed by last bullet!)
- MC predicts a SV scale factor of 1.2±10%
- Before blessing: dependencies of MC scale factor

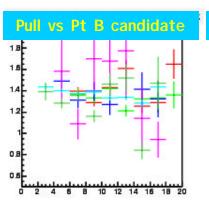

Conclusions

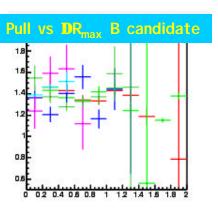

- I dentified a procedure to determine all the relevant scale factors
- Three scale factors:
 - PV: 1.38±5% (based solely on data!)
 - Beamline: 1.0 (not really, but not relevant for L_{xy})
 - SV: 1.2 ±10% (from MC, after validation)
- Systematics mostly from inter-sample variation/neglected dependancies
- Re-running through all the samples to finalize numbers, stabilize statistics etc.

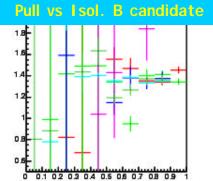

Backup

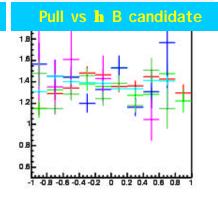

PV scale factor dependencies (Y)

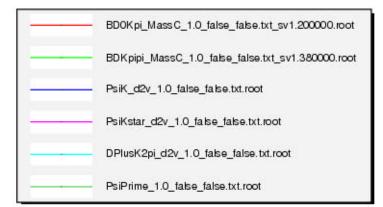


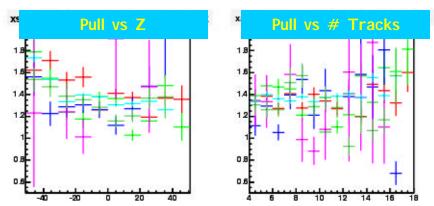


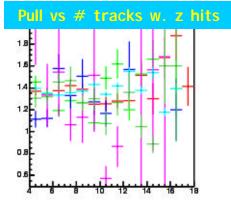


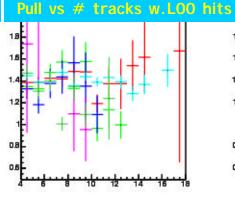


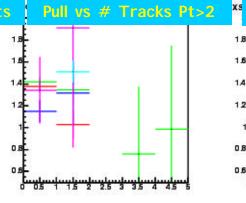


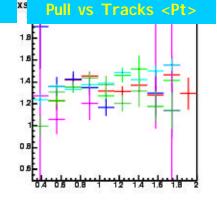


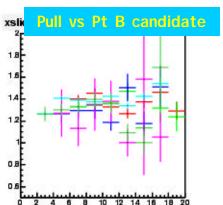


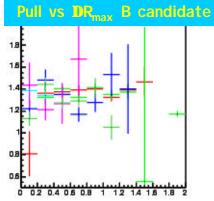


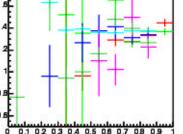


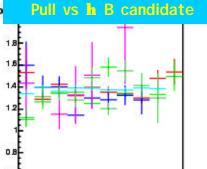

PV scale factor dependencies (Z)

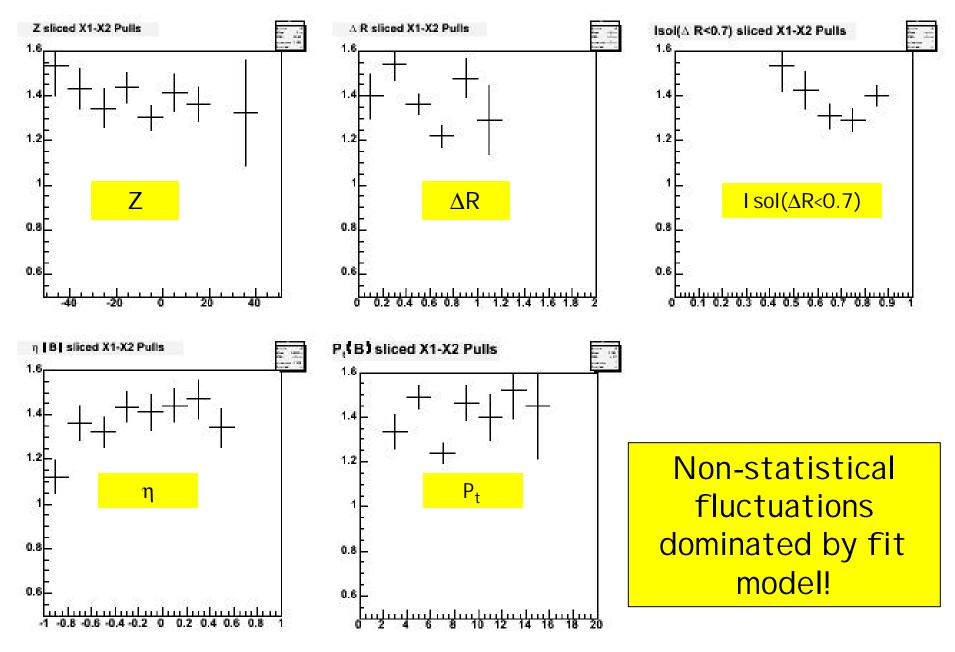


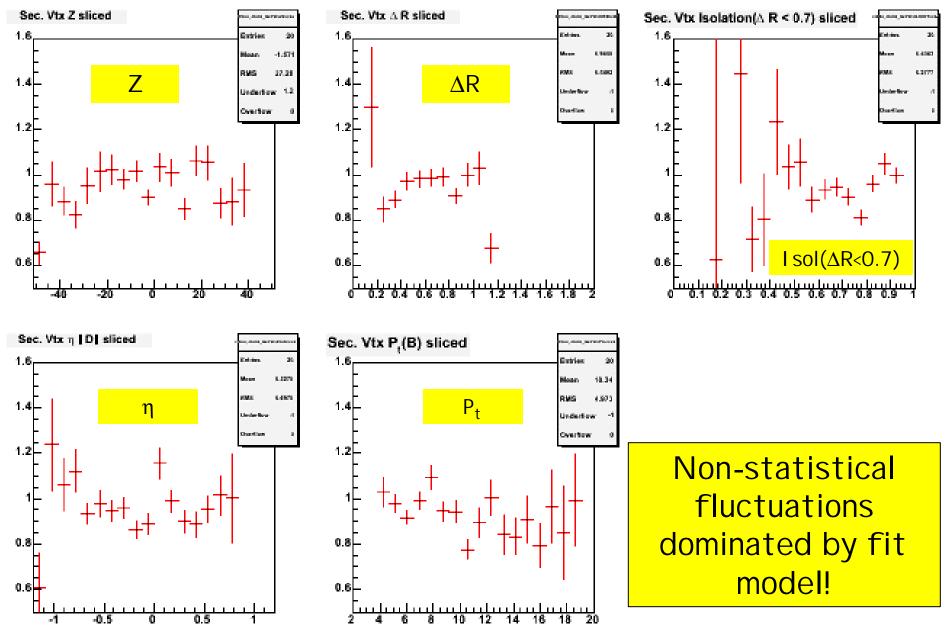






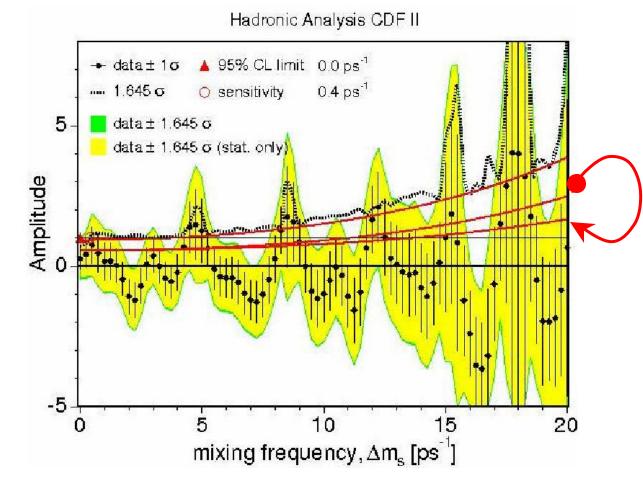






-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

PV scale factor for ψ' : details (à la CDF7500)



SV scale factor for ψ' : details (à la CDF7500)

What do we gain?

- 1. 15-20% In vertex resolution!
- 2. Better control of systematics (hard to evaluate)
- 3. Correct EbE resolution (if is not clear that it is correct now)

•Red arrow is the effect of 1. Only

Euphemism

•Point 2. Affects mostly the green area (tiny ?)

Point 3. Has an effect qualitatively similar to 1., but hard to evaluate

Hadronic analysis systematics

source	selected Δm_s scan points				
	0.0	5.0	10.0	15.0	20.0
$B_s \to D_s K$ level	0.019	0.024	0.030	0.037	0.047
dilution scale factors	0.143	0.168	0.205	0.254	0.314
dilution templates	0.119	0.147	0.178	0.211	0.246
fraction of Λ_b	0.014	0.009	0.009	0.011	0.012
Punzi term for σ_{ct}	0.009	0.008	0.022	0.033	0.030
dilution of $B \to DX$	0.025	0.001	0.000	0.000	0.001
σ _{ct} scale factor	0.000	0.024	0.061	0.090	0.144
usage of L00 in bias curve	0.001	0.001	0.001	0.001	0.001
Bs lifetime uncertainty	0.001	0.001	0.001	0.001	0.001
reweighted p_t spectrum	0.001	0.001	0.001	0.001	0.001
non-Gaussian tails in ct resol.	0.001	0.027	0.052	0.078	0.104
neglect B^0 in fit	0.039	0.036	0.033	0.031	0.028
effect of $\Delta\Gamma/\Gamma = 0.2$	0.028	0.028	0.028	0.028	0.028
Total systematic	0.195	0.232	0.289	0.357	0.443
Statistical	0.393	1.129	1.010	2.652	5.281