

Outline

- Introduction
- Data Sample
- Toy Montecarlo
 - Expected Sensitivity
 - Expected Resolution
- Frequency Scans:
 - Fourier
 - Amplitude Significance
 - Amplitude Scan
 - Likelihood Profile
- Conclusions

Introduction

- Principles of Fourier based method presented on 12/6/2005, 12/16/2005, 1/31/2006, 3/21/2006
- Methods documented in CDF7962 & CDF8054
- Full implementation described on 7/18/2006 at BLM
- Aims:
 - settle on a completely fourier-transform based procedure
 - Provide a tool for possible analyses, e.g.:
 - $J/\psi\phi$ direct CP terms
 - D_sK direct CP terms
 - Perform the complete exercise on the main mode ($\phi \pi$)
 - All you will see is restricted to $\phi\pi.$ Focusing on this mode alone for the time being
- Not our Aim: bless a mixing result on the full sample

Data Sample

- Full 1fb⁻¹
- D_s→φπ, main Bs peak only
- ~1400 events in [5.33,5.41] consistent with baseline analysis
- S/B ~ 8:1
- Background modeled from [5.7,6.4]
- Efficiency curve measured on MC
- Taggers modeled after winter '05 (cut based) + OSKT

Toy Montecarlo

- Exercise the whole procedure on a realistic case (see BML 7/18)
- Toy simulation configured to emulate sample from previous page
- Access to MC truth:
 - Study of pulls (see BML 7/18)
 - Projected sensitivity
 - Construction of confidence bands to measure false alarm/detection probability
 - Projected Δm resolution

Toy Montecarlo: sensitivity

- Rem: Golden sample only
- Reduced sensitivity, but in line with what expected for the statistics
- All this obtained without tdependend fit
- Iterating we can build confidence bands

6

Distribution of Maxima

- Run toy montecarlo several times
 - "Signal"→default toy
 - "Background" \rightarrow toy with scrambled taggers
- Apply peak-fitting machinery
- Derive distribution of maxima (position,height)

Max A/σ: limited separation and **uniform peak distribution for background**, but not model (&tagger parameter.) dependent Min log L_{ratio}: improved separation and **localized peak distribution for background**

Toy Montecarlo: confidence bands

Signal or background depth of deepest minimum in toys

•Tail integral of distribution gives detection & false alarm probabilities

Toy Montecarlo: ∆m resolution

Two approaches:

- •Fit pulls distributions and measure width
- •Fit two parabolic branches to L minimum in a toy by toy basis

Data

All the plots you are going to see are based on Fourier transform & toy montecarlo distributions, unless explicitly mentioned

Data: Fourier and Amplitude

12

Compare with standard A-scan

Amplitude Scan

13

Data: Where we look for a Peak

Likelihood Ratio

14

Data Results

- Peak in L ratio is: -2.84 (A/σ=2.53)
 - Detection (signal) probability: 53%
 - False Alarm (background fake) probability: 25%
- Likelihood profile:

 $\Delta m_s = 17.23^{+0.41}_{-0.55} \, ps^{-1}$

Conclusions

- Worked the exercise all the way through
- Method:
 - Assessed
 - Viable
 - Power equivalent to standard technique
- Completely independent set of tools/code from standard analysis, consistent with it!
- Tool is ready and mature for full blown study
- Next: document and bless result as proof-ofprinciple

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.