

Mixing: a tasty stone soup

Alessandro Cerri

THIS TALK IS BASED ON NON BLESSED CDF RESULTS AND IS INTENDED FOR CONSUMPTION INTERNAL TO THE EXPERIMENT ONLY

Introduction

- Topics in progress:
 - Invite people to take part into the "real action"
 - Broadening our understanding of " Δm_s tools"
- Several interesting topics
- Lots of room for improvements
- Selection is arbitrary, but not far from thorough (ouch!)

(there is more to a stone soup than just the stone)

- Primary Vertex reconstruction
- Properties of tracks around B mesons
- PID:
 - dE/dx
 - COT
 - Si
 - TOF
 - Joint

Primary Vertex

Primary Vertex Reconstruction

- Lifetime resolution is a fundamental ingredient for a sensitive Δm_s analysis
- Traditionally the B group avoids bias rather than pushing resolution: beamline at candidate's $z_{\rm 0}$
- We cannot accept this trade-off for x_s
- We want to use the Si reconstruction and the event information at its best

Event by event vertex!

Event by Event Vertex

Padova, Roma, LBNL

Montecarlo based studies available now

Modest improvement in (x,y)

•Noticeable effect in z!

•Data based (J/ ψ) in the pipeline

What is sitting around a reconstructed B?

Tracks around B mesons

LBNL

- Fragmentation tracks are the salt of SS(K)T
- Current SST based on Run I "facts"
- We have to push the performance as much as we can
 - Refine understanding of fragmentation
 - Transfer knowledge to MC
 - Optimize SS(K)T performance
- This is part of the studies carried on for an "embedding montecarlo":

Properties of Tracks about B Mesons

1513±43

100

- Samples:
 - Leptonic: $\psi K_{s'} \psi K^*$
 - Hadronic: $D^0\pi$, $D^+\pi$
- Sideband subtraction performed everywhere

Tracks around $\Delta R \le 1$

Tagging properties

2	$B^+ \rightarrow \psi K^+$	$B^+ \rightarrow D^0 \pi^+$	$B^+ \rightarrow D^0 \pi^+$	$B^0 \rightarrow \psi K^*$	$B^0 \rightarrow D^+ \pi^-$
2000 C	**	$D^0 \to K\pi$	$D^0 \to K3\pi$		$D^+ \to K \pi \pi$
N_{ch}	3.24 ± 0.06	2.78 ± 0.05	2.76 ± 0.05	3.09 ± 0.06	2.90 ± 0.05
N_{ch}^{OS}	1.77 ± 0.04	1.53 ± 0.03	1.56 ± 0.04	1.53 ± 0.04	1.49 ± 0.03
N_{ch}^{SS}	1.47 ± 0.04	1.25 ± 0.03	1.20 ± 0.04	1.56 ± 0.04	1.41 ± 0.03
p_t	0.93 ± 0.01	0.87 ± 0.007	0.85 ± 0.005	0.92 ± 0.01	0.90 ± 0.007
Iso	0.81 ± 0.003	0.81 ± 0.002	0.85 ± 0.002	0.81 ± 0.003	0.82 ± 0.003
ΔR	0.62 ± 0.004	0.62 ± 0.003	0.60 ± 0.004	0.62 ± 0.004	0.60 ± 0.003

Table 1: The average value of various tracking quantities for the 5 samples described in the text. In all cases, tracks are required to have at more than 2 axial silicon hits. Only tracks with $\Delta R < 1.0$ with respect to the *B* meson are included. Uncertainties quoted here are statistical only.

2	$B^+ \rightarrow \psi K^+$	$B^+ \rightarrow D^0 \pi^+$	$B^+ \rightarrow D^0 \pi^+$	$B^0 \rightarrow \psi K^*$	$B^0 \rightarrow D^+ \pi^-$
2		$D^0 \to K\pi$	$D^0 \to K3\pi$		$D^+ \to K \pi \pi$
N_{ch}	3.35 ± 0.07	3.12 ± 0.05	3.07 ± 0.08	3.17 ± 0.07	3.21 ± 0.05
N_{ch}^{OS}	1.82 ± 0.04	1.72 ± 0.04	1.73 ± 0.05	1.56 ± 0.04	1.67 ± 0.04
N_{ch}^{SS}	1.53 ± 0.04	1.39 ± 0.04	1.34 ± 0.05	1.60 ± 0.04	1.53 ± 0.04
pt	0.95 ± 0.01	0.87 ± 0.008	0.84 ± 0.003	0.90 ± 0.004	0.86 ± 0.007
Iso	0.80 ± 0.004	0.81 ± 0.003	0.84 ± 0.003	0.81 ± 0.004	0.82 ± 0.003
ΔR	0.62 ± 0.004	0.63 ± 0.004	0.60 ± 0.005	0.62 ± 0.005	0.62 ± 0.004

Table 2: The average value of various tracking quantities for the 5 samples described in the text. These results differ from Table 1 in that the pseudorapidity range of the *B* candidate is now limited to $|\eta_B^{detector}| < 0.6$

To-do

- Compare with MC
- Repeat with B_s
- Propagate the information/tools to flavour tagging!

Particle ID

PID: TOF

Rome, Pisa, Fermilab...

- Critical for Kaon-id
- I.E. critical for Δm_s
- Efficiency/separation are the main issues!

TOF Efficiency

latest news from FNAL

•Efficiency improved WRT previous releases

- Intrinsic correlation with occupancy (unavoidable)
- •Figure ~50-60%
- •Can we live with it?

TOF separation

dE/dx

Penn, Pisa, Karlsruhe...

- "Standard" dE/dx (COT-based)
 - Big progress has been made in the recent analyses (see Diego's talk)
 - Separation close to what we had in Run I
 - Still lacking a systematic, top-down approach to the problem starting from low level (hit/wire/run) calibrations
- "Silicon" dE/dx is the real appealing news: we have an excellent radiator (~10% of rad. Length), let's use it!

Si based dE/dx

Karlsruhe

✓ Layer level calibrations

✓ Extraction of UC

Likelihood ratio based separation

Karlsruhe

e.g. tracks with $|\eta| < 1$ and #SiHits>8 :

To-do

- TOF:
 - Efficiency? (single-ended hits)
 - Separation? (t0)
- dE/dx
 - Low level understanding of dE/dx(COT) corrections
 - Perfect dE/dx(Si)
- Improve studies on data:
 - good K samples (see Pierluigi)
 - Spectrum/geometrical distribution
 - Understand non-trigger objects!

Merging PID algorithms

- Excellent idea, but...
- Stage 0:
 - Exploit each individual algorithm to its full extent!
- Stage 1:
 - TOF+dE/dx (COT)
 - TOF+dE/dx (COT+Si)
- Stage 2:
 - All together
- Merging can emphasize either efficiency or separation

Conclusions

- Path to Δm_s full of low level issues to be addressed
- These are just the first steps:
 - A lot of room for improvements
 - There is a lot of technology to develop