Probing the Boundaries of the Standard Model with B Physics at CDF II

Alessandro Cerri LBNL

April 13th 2006

Synopsis

- The Big Picture
- Why B physics at the TeVatron is a good bet
- Tools of the trade
 - CDF: detector and DAQ
 - SVT: the CDF key to B physics
- Selected examples
 - Hadronic Moments in b \rightarrow clv (V_{cb})
 - B_s Mixing (V_{td} and new physics)
- Perspectives
- Conclusions

The Flavor Sector: CKM Matrix

Quarks couple to W through V_{CKM}: rotation in flavor space!

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

V_{CKM} is Unitary

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Qualitative to Quantitative

Like other areas, CKM physics can now precisely probe the Standard Model

B physics probes the SM

The Tevatron as a b factory

- Υ (4s) B factories program extensive and very successful BUT limited to B_u , B_d
- Tevatron experiments can produce all b species: B_u,B_d,B_s,B_c, B^{**}, Λ_b, Ξ_b
 See PRD 71, 032001 2005

 $\sigma_{B^{\circ}} = 3.51 \pm 0.42 \pm 0.53 \,\mu b @ |y| < 1 \ p_t > 6$

Compare to:

$$-\Upsilon(4S) \approx 1 \text{ nb (only B^0, B^+)}$$

 $-Z^0 \approx 7 \text{ nb}$
Unfortunately
 $-p\bar{p} \approx 100 \text{ mb}$

b production in $p\bar{p}$ collisions is so large (~300 Hz @ 10³² cm⁻² Hz) that we could not even cope with writing it to tape!

Path to New Physics

CKM meas. \rightarrow discrepancies \rightarrow new physics hints How do we achieve this ability?

• Design/ improve the "tools of the trade"

-Experimental (detector & techniques)

-Theoretical (phenomenological devices)

• Measure uncharted properties at the boundaries of our knowledge

-Masses

-Lifetimes

-Branching ratios

• Press further ahead and investigate the boundaries:

- -Mixing
- -CP asymmetries
- -Rare decays etc.

Detector & Techniques

CDF and the TeVatron

Renewed detector & Accelerator chain:

- Higher Luminosity higher event rate
- →Detector changes/improvements:
 - →DAQ redesign
 - →Improved performance:
 - Detector Coverage
 - Tracking Quality

New Trigger strategies for heavy flavors:

displaced vertex trigger

SVT: a specialized B physics trigger

Good IP resolution

• As fast as possible

→Customized Hardware

...and a successful endeavor!

• The recipe: specialized hardware

1)Clustering

Find clusters (hits) from detector 'strips' at full detector resolution

2)Template matching

Identify roads: pre-defined track templates with coarser detector bins (superstrips)

3)Linearized track fitting

Fit tracks, with combinatorial limited to clusters within roads

- SVT is capable of digesting >20000 evts/second, identifying tracks in the silicon
- CDFII has been running it since day -1

SVT is the reason of the success and variety of B physics in CDF run II

Knowledge of non- $\Upsilon(4s)$ -produced b (PDG'04)

Λ_b^0 DECAY MODES Fraction (Γ_j/Γ)	ρ Confidence level (MeV/c)			
$J/\psi(1S)\Lambda$ (4.7±2.8)×10 ⁻⁴ $\Lambda_{c}^{+}\pi^{-}$ seen	4 1744 2345			
$\Lambda_c^+ a_1(1260)^- \qquad \text{seen} \\ \Lambda_c^+ \ell^- \overline{\nu}_\ell \text{anything} \qquad [t] (9.2 \pm 2.1) \%$	B ⁰ DECAY MODES	Fraction (Γ_{f}/Γ_{c}) Confidence leve	p el (MeV/c)
$\begin{array}{c} p\pi^{-} & < 5.0 & \times 10^{-5} \\ pK^{-} & < 5.0 & \times 10^{-5} \\ \Lambda\gamma & < 1.3 & \times 10^{-3} \end{array}$	$D_s^- anything$ $D_s^- \ell^+ \nu_\ell anything$ $D_s^- \pi^+$ $D_s^{(*)+} D_s^{(*)-}$	(94 ± 30) $[kkk] (7.9 \pm 2)$ < 13 (23 + 21)) % .4) % %	2322
	$J/\psi(1S)\phi \ J/\psi(1S)\pi^0 \ J/\psi(1S)\eta \ \psi(2S)\phi \ \pi^+\pi^-$	<pre>(9.3 ± 3. < 1.2 < 3.8 seen</pre>	3) $\times 10^{-4}$ × 10^{-3} 90% × 10^{-3} 90%	1590 6 1788 6 1735 1123
B_c^+ DECAY MODES × B(b → B _c) Fraction (Γ _i /Γ) The following quantities are not pure branching ra) Con $\eta \pi^0 \pi^0 \eta^0 \eta^0$ atios; rathe $\rho^0 \rho^0 \phi^0$	< 1.7 < 2.1 < 1.0 < 1.5 < 3.20 < 6.17	$ \begin{array}{cccc} \times 10^{-4} & 90\% \\ \times 10^{-4} & 90\% \\ \times 10^{-3} & 90\% \\ \times 10^{-3} & 90\% \\ \times 10^{-4} & 90\% \\ \times 10^{-4} & 90\% \end{array} $	5 2681 6 2681 6 2655 6 2628 6 2570 6 2528
$\Gamma_{i}/\Gamma \times B(b \rightarrow B_{c}).$ $J/\psi(1S)\ell^{+}\nu_{\ell} \text{ anything} \qquad (5.2^{+2.4}_{-2.1}) \times J/\psi(1S)\pi^{+} \qquad < 8.2 \qquad \times J/\psi(1S)\pi^{+}\pi^{+}\pi^{-} \qquad < 5.7 \qquad \times J/\psi(1S)a_{1}(1260) \qquad < 1.2 \qquad \times D^{*}(2010)^{+}\overline{D}^{0} \qquad < 6.2 \qquad \times J/\psi(1S)a_{1}(1260)$	$ \begin{array}{ccc} & & & \phi \phi \\ \phi \phi \\ \phi \phi \\ \pi^+ K^- \\ 10^{-5} & & & K^+ K^- \\ 10^{-4} & & & \overline{K^*} (892)^0 \rho^0 \\ 10^{-3} & & \phi K^* (892)^0 \\ 10^{-3} & & & \rho \overline{\rho} \\ 10^{-3} & & & \gamma \gamma \end{array} $	<pre>< 1.183 < 2.1 < 5.9 < 7.67 < 1.681 < 1.013 < 5.9 < 1.48</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 2484 6 2660 6 2639 6 2551 6 2532 6 2508 6 2516 6 2655
	$\phi\gamma$	< 1.2	$\times 10^{-4}$ 90%	6 2588

Lifetimes: fully reconstructed hadronic modes

- Testbed for our ability to understand trigger biases
- Large, clean samples with understood backgrounds
- Excellent mass and vertex resolution
- Prerequisite for mixing fits!

 $\begin{aligned} \tau(B^+) &= \textbf{1.661} \pm \textbf{0.027} \pm \textbf{0.013} \text{ ps} \\ \tau(B^0) &= \textbf{1.511} \pm \textbf{0.023} \pm \textbf{0.013} \text{ ps} \\ \tau(B_s) &= \textbf{1.598} \pm \textbf{0.097} \pm \textbf{0.017} \text{ ps} \end{aligned}$

Systematics (µm)

Effect	Variation (μm)	Variation (μm)
	B^0	B_s
MC input $c\tau$	negligible	negligible
p_T reweight	1.9	1.9
Scale Factor	negligible	negligible
Bkg ct description	1.1	1.1
Bkg fraction	2.0	2.0
I.P. correlation	1.0	1.0
Eff. parameterization	1.5	1.5
L_{xy} significance	negligible	2
$\Delta\Gamma_s$	-	1.0
Alignm. $+$ others	2.4	2.4
Total	4.2	4.7

http://www-cdf.fnal.gov/physics/new/bottom/050303.blessed-bhadlife/

Improving SM Tools

Closing in on CKM

- QCD corrections \leftrightarrow uncertainty on the b wave function inside the meson
- This is something that can be constrained experimentally!

Phenomen. Tools Improvement

Hadronic Moments

• HQET/OPE is a fundamental tool for CKM physics with B mesons. For instance it relates:

- B \rightarrow X_uIv to [b \rightarrow uIv] \Rightarrow V_{ub}
- $B \rightarrow X_c I_V$ to $[b \rightarrow c I_V] \Rightarrow V_{cb}$
- "semi-empirical" approach: parameterizes any prediction in a series expansion of effective operators
- Expectation value of these operators is a "universal" property ⇒can be assessed with concurrent measurements
- Example:

 V_{cb} (±1%_{exp}±2.5%_{theo}) \Leftrightarrow Hadronic Moments: (μ,σ) of M(X_c)²

Aim: Constrain the unknown parameters and reduce $|V_{cb}|$ uncertainty. With enough measurements: test of underlying assumptions (duality...).

Analysis Strategy

PRDRC 71, 051103 2005

Results & Comparison with other experiments

Good agreement with HQET ⊕ previous determinations.

- First measurement at hadron machines: different environment and experimental techniques.
- Competitive with other experiments.

- Little model dependency. No assumptions on shape or rate of D** components.
- Through integration with other experiments and other "moments" we can seriously probe HQET/ QHD

Extraction of the HQE Parameters

- Combination of all the experimental measurements of the hadronic moments
- Effective determination of the two OPE operators relevant at order $1/m_B(\Lambda)$ $1/m_B^2(\lambda_1)$
- CDF contributes as much as the B factories in this determination!

Working our way through CKM sides

• V_{td} is derived from mixing effects

• QCD uncertainty is factored out in this case resorting to the relative Bs/Bd mixing rate (V_{td}/V_{ts})

• Beyond the SM physics could enter in loops!

B production at the TeVatron

- Production: gg→bb
- NO QM coherence, unlike B factories
- Opposite flavor at production→one of the b quarks can be used to tell the flavor of the other at production
- Fragmentation products have some memory of b flavor as well

Amplitude Scan

• Mixing amplitude fitted for each (fixed) value of Δm

• On average every Δm value (except the true Δm) will be 0

• "sensitivity" defined for the average experiment [mean 0]

- The actual experiment will have statistical fluctuations
- Actual limit for the actual experiment defined by the systematic band centered at the measured asymmetry

Amplitude Scan do and don't

- Amplitude scan is helpful to:
 - Set a ∆m limit
 - Combine experimental results
 - It is not easy to measure mixing from it
- How does an evidence of a signal look like?
- What procedure should one follow if aiming at a measurement?
 - These questions must be asked before performing the analysis!
- Otherwise lack of coverage is the punishment!
- Not to confuse the individual significance of each A measurement with the overall significance of the 'feature'
- 'Discovery threshold' is an arbitrary cut on the probability for nonsignal to produce the same features: nothing to do in general with how significant the value of a given parameter you measure is!

CDFs Choice of Procedure

- decided upon before un-blinding the data
- "random tag" significance to be estimated using $\Delta(\ln L)$ method
- no search window to be used

Significance

- $\Delta log(L) = log[L(A=1) / L(A=0)] \rightarrow likelihood "dip" at signal$
- more powerful discriminant than A/ σ (A)
- probability of random tag fluctuations evaluated on data
 (with randomized tags) → checked that toy Monte Carlo gives same answer

Flavor Tagging

Several methods, none is perfect !!!

B_s Mixing: tagging performance

- use exclusive combination of tags on opposite side
- same side opposite side combination assumes independent tagging information

σ

dat

ຜ້

Measured from

<i>.</i>		εD ² Hadronic (%)	εD ² Semileptonic (%)
	Muon	0.48 ± 0.06 (stat)	0.62 ± 0.03 (stat)
	Electron	0.09 ± 0.03 (stat)	0.10 ± 0.01 (stat)
	JQ/Vertex	0.30 ± 0.04 (stat)	0.27 ± 0.02 (stat)
	JQ/Prob.	0.46 ± 0.05 (stat)	0.34 ± 0.02 (stat)
	JQ/High p _T	0.14 ± 0.03 (stat)	0.11 ± 0.01 (stat)
	Total OST	1.47 ± 0.10 (stat)	1.44 ± 0.04 (stat)
	SSKT	3.42 ± 0.06 (stat)	4.00 ± 0.04 (stat)

~5% of the Events are effectively used!

Proper time resolution

Semileptonic modes: momentum uncertainty

Fully reconstructed: Lxy uncertainty \rightarrow improve reconstruction

B_s Mixing: D0 Result

•εD²~2.5%

• Very exciting: is this a mixing signal???

Sensitivity: 14.1 ps⁻¹

very exerting. Is this a mixing signal.		
Pros	Cons	
∆m≈19	∆m≈19	
A/σ _A ≈2.5	(A-1) /σ _A ≈1.6	
L has a nice dip	but shallow	

Hep-ex/0603029

B_s Mixing: CDF semileptonic

http://www-cdf.fnal.gov/physics/new/bottom/051020.semi_Bsmix/
B_s Mixing: CDF hadronic

B_s Mixing: combined CDF result

Likelihood Ratio

the measurement is already very precise! (at 2.5% level)

 Δm_s in [17.00, 17.91] ps⁻¹ at 90% CL Δm_s in [16.94, 17.97] ps⁻¹ at 95% CL

Systematic Uncertainties I

- related to absolute value of amplitude, relevant only when setting limits
 - cancel in A/ σ A, folded in in confidence calculation for observation
 - systematic uncertainties are very small compared to statistical

Systematic Uncertainties II

- systematic uncertainties from fit model evaluated on toy Monte Carlo
- have negligible impact
- relevant systematic unc. from lifetime scale

	Syst. Unc		
Fitting Model	< 0.01ps ⁻¹		
SVX Alignment	0.04 ps ⁻¹		
Track Fit Bias	0.05 ps ⁻¹		
PV bias from tagging	0.02 ps ⁻¹		
Total	0.07 ps ⁻¹		

All relevant systematic uncertainties are common between hadronic and semileptonic samples

Δm_s and V_{td}

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{Bs}}{m_{Bd}} \xi^2 \frac{\left|V_{ts}\right|^2}{\left|V_{td}\right|^2}$$

- inputs:
 - \rightarrow m(B⁰)/m(B_s) = 0.9830 (PDG 2006)
 - \rightarrow ξ = 1.21 ^{+0.47}_{-0.35} (M. Okamoto, hep-lat/0510113)
 - $\rightarrow \Delta m_d = 0.507 \pm 0.005 (PDG 2006)$

 $|V_{td}| / |V_{ts}| = 0.208 + 0.008 - 0.007$ (stat + syst)

- compare to Belle $b \rightarrow s\gamma$ (hep-ex/050679):
 - $|V_{td}| / |V_{ts}| = 0.199 + 0.026 (st at) + 0.018 (syst)$

<u>∆m_s & CKM</u>

Thanks to M. Papucci

43

<u>∆ms from Tevatron & BSM Limits</u>

 $A_{SM} \to A_{SM} \left(1 + h_s e^{i\sigma_s} \right)$

B Physics BSM: Perspectives

Exciting times ahead:

- Most analyses sensitive to BSM physics are statistically limited
- B_s results has become an important complementary addition to the CKM mapping!
- ...but remember: TeVatron is not alone anymore in the game!

Conclusions

• We are living an exciting transition era of increasingly quantitative results in the CKM sector

• Beyond SM physics could be around the corner, but hard to discern models without direct evidences

• LHC will investigate the completely uncharted territory!

• Living this constant exploration of new discoveries puts us at the forefront of human knowledge, a recurring theme in the history of science:

"Modern science did not spring perfect and complete, as Athena from the head of Zeus, from the mind of Galileo and Descartes" A. Koyre`, "Galileo and the Scientific Revolution of the Seventeenth Century"

LHC

The next frontier of knowledge!

Jan Cossiers, "Prometheus Carrying Fire"

Backup Slides

What happens for large x_s?

Indirect Measurement of Δm_s :

$$\frac{\Delta\Gamma_{s}}{\Delta m_{s}}\Big|_{SM} = \frac{2}{3\pi} \frac{m_{t}^{2}}{m_{b}^{2}} \frac{h\left(\frac{m_{t}^{2}}{M_{W}^{2}}\right)}{\left(1 - \frac{8}{3}\frac{m_{c}^{2}}{m_{b}^{2}}\right)} = (3.7^{+0.8}_{-1.5}) \times 10^{-3}$$

-SM $\Delta\Gamma_s/\Gamma_s=0.12\pm0.06$ (Dunietz, Fleischer & Nierste)

Probing large Δm_s : $\Delta \Gamma / \Gamma$

- $B_s \rightarrow J/\psi \phi$
 - $B \rightarrow VV$, mixture of CP even/ odd separate by angular analysis
 - Combine two-lifetime fit + angular $\rightarrow \Delta\Gamma_s = \Gamma_H - \Gamma_L$

$$\frac{\Delta\Gamma_{s}}{\Gamma_{s}} = 0.65^{+0.25}_{-0.33} \pm 0.01$$
1803 2005 few ps⁻¹ in Δm_{s} !

PRL 94, 101803 2005

$$CDFII \quad c\tau(B_s \to KK) = 1.53 \pm 0.18 \pm 0.02 \ ps$$
$$HFAG \qquad c\tau(B_s \to FS) = 1.454 \pm 0.04 \ ps$$
$$\Delta\Gamma$$

$$\frac{\Delta\Gamma_s}{\Gamma_s} = -0.08 \pm 0.23 \pm 0.03$$

 $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}$

Beyond the SM

Analyses like these have laid down the path and the tools and techniques for the exploration of the SM boundaries:

- Non SM effects:
 - b→d ?
 - •b→s
 - Rare decays $(b \rightarrow s\gamma)$
 - $B_s \rightarrow \mu\mu, \mu\mu\phi$ etc.
 - В→ фК
 - $B_s \rightarrow \phi \phi$

• X_s

Rare decays

- Exploit the large B production rate
- Measure relative BR (e.g. $\mu\mu$ to J/ ψ K) to factor out absolute ϵ and luminosity measurements
- SM: $BR(B_s \rightarrow \mu \mu) < 3.8E-9$

CP: sss

- b→sss transitions are 'misbehaving' at B factories
- CDF II can look at them too. We started from ϕK :

• With the advantage of being able to look at Bs too:

 $BR(B_s \rightarrow \phi\phi) = (1.4 \pm 0.6 (stat) \pm 0.2 (syst) \pm 0.5 (BR)) \cdot 10^{-5}$

Phenomen. Tools Improvement

Hadronic Moments

No room for everything...I will focus on one example:

• HQET/OPE is a fundamental tool for CKM physics with B mesons. For instance it relates:

- B \rightarrow X_uIv to [b \rightarrow uIv] \Rightarrow V_{ub}
- B \rightarrow X_cI ν to [b \rightarrow cI ν] \Rightarrow V_{cb}

• "semi-empirical" approach: parameterizes any prediction in a series expansion of effective operators

• Expectation value of these operators is a "universal" property ⇒can be assessed with concurrent measurements

• Example: V_{cb} (±1%_{exp}±2.5%_{theo}) \Leftrightarrow Hadronic Moments

D+/D*+ Reconstruction

Backgrounds

→ model: wrong-sign $\pi^{**+} \ell^-$ combinations

Corrected Mass and D** moments

Procedure:

- Unbinned procedure using weighted events.
- Assign negative weights to background samples.
- Propagate efficiency corrections to weights.
- Take care of the D⁺ / D^{*+} relative normalization.
- Compute mean and sigma of distribution.

Result:

$$m_{1} = \left\langle m_{D^{**}}^{2} \right\rangle = (5.83 \pm 0.16_{stat}) GeV^{2}$$
$$m_{2} = \left\langle \left(m_{D^{**}}^{2} - m_{1} \right)^{2} \right\rangle = (1.30 \pm 0.69_{stat}) Ge$$

Systematic Errors

	Δm_1 (GeV ²)	∆m ₂ (GeV ⁴)	∆M₁ (GeV²)	∆M₂ (GeV ⁴)	ΔΛ (GeV)	Δλ ₁ (GeV²)
Stat.	0.16	0.69	0.038	0.26	0.078	0.057
Syst.	0.08	0.22	0.068	0.13	0.091	0.082
Mass resolution	0.02	0.13	0.005	0.04	0.012	0.009
Eff. Corr. (data)	0.03	0.13	0.006	0.05	0.014	0.011
Eff. Corr. (MC)	0.06	0.05	0.016	0.03	0.017	0.006
Bkgd. (scale)	0.01	0.03	0.002	0.01	0.003	0.002
Bkgd. (opt. Bias)	0.02	0.10	0.004	0.03	0.006	0.006
Physics bkgd.	0.01	0.02	0.002	0.01	0.004	0.002
D ⁺ / D ^{*+} BR	0.01	0.02	0.002	0.01	0.004	0.002
D ⁺ / D ^{*+} Eff.	0.02	0.03	0.004	0.01	0.005	0.002
Semileptonic BRs			0.065	0.10	0.064	0.022
ρ ₁					0.041	0.069
T _i					0.032	0.031
α _s					0.018	0.007
m _b , m _c					0.001	0.008
Choice of p _l *cut					0.019	0.009

Moments-ology

HQET \rightarrow Distributions (e.g. E_{γ}) \rightarrow Mean, RMS (nth moment..) Measurement

• Photonic moments: Photon energy in b \rightarrow s γ

(CLEO)

- Leptonic moments: $B \rightarrow X_c I_v$, lepton E in B rest frame
- Hadronic moments: $B \rightarrow X_c I_V$, recoil mass²: $M(X_c)^2$

(CDFII, CLEO, DELPHI, BABAR)

$$M_{1} = \int_{s_{H}^{min}}^{s_{H}^{max}} ds_{H} \left(s_{H} - m_{\overline{D}}^{2}\right) \frac{1}{\Gamma_{sl}} \frac{d\Gamma_{sl}}{ds_{H}} = \langle s_{H} \rangle - m_{\overline{D}}^{2}, \quad s_{H} \equiv M_{X_{c}}^{2}$$
$$M_{2} = \int_{s_{H}^{min}}^{s_{H}^{max}} ds_{H} \left(s_{H} - \langle s_{H} \rangle\right)^{2} \frac{1}{\Gamma_{sl}} \frac{d\Gamma_{sl}}{ds_{H}} = \left\langle \left(s_{H} - m_{\overline{D}}^{2}\right)^{2} \right\rangle - M_{1}^{2}$$

Aim: Constrain the unknown parameters and reduce $|V_{cb}|$ uncertainty. With enough measurements: test of underlying assumptions (duality...).

Hadronic Moments, HQET and Vcb

Most precise determination of V_{cb} comes from Γ_{sl} ("inclusive" determination):

$$\Gamma_{sl}(b \to c\ell^{-}\overline{\nu}) = \frac{BR(b \to c\ell^{-}\overline{\nu}_{\ell})}{\tau_{b}} = |V_{cb}|^{2} \times F_{theory}$$

Y(4S), LEP/SLD, CDF measurements. Experimental $\Delta |V_{cb}| \sim 1\%$ Theory with pert. and non-pert. corrections. $\Delta |V_{cb}|$ ~2.5%

$$\begin{split} F_{theory} \ \text{evaluated using OPE in HQET: expansion in } \alpha_{s} \ \text{and } 1/m_{B} \ \text{powers:} \\ O(1/m_{B}) \ & \rightarrow 1 \ \text{parameter: } \Lambda \qquad (\text{Bauer et al., PRD 67 (2003) 071301}) \\ O(1/m_{B}^{2}) \ & \rightarrow 2 \ \text{more parameters: } \lambda_{1}, \lambda_{2} \qquad Constrained from pseudo-scalar/vector B and D mass of the scalar/vector B and D mass of the scalar/ve$$

What is X_c?

Semi-leptonic widths (PDG 04):

	Br (%)		
$B^{+} \rightarrow X_{c} \mid v$	10.99 ± 0.31		
$B^+ \rightarrow D^* v$	6.04 ± 0.23		
$B^+ \rightarrow D \mid v$	$\textbf{2.23}\pm\textbf{0.15}$		

(PDG b/B⁺/B⁰ combination, b \rightarrow u subtracted)

→~25% of semi-leptonic width is poorly known

Higher mass states: D**

No $B \rightarrow ID'$ experimental evidence so far. DELPHI limit:

 $\begin{cases} BR(b \to D^{+}\pi^{+}\pi^{-}\ell^{-}\nu) < 0.18\% @ 90\% CL \\ BR(b \to D^{*+}\pi^{+}\pi^{-}\ell^{-}\nu) < 0.17\% @ 90\% CL \end{cases}$

We assume no D' \rightarrow D(*) $\pi\pi$ contribution in our sample

How can CDF look at X_c?

Must reconstruct all channels to get all the D^{**} states. → However CDF has limited capability for neutrals

- $B^0 \rightarrow D^{**-}I^+v$ always leads to neutral particles \rightarrow ignore it
- $B \rightarrow D^{**0}I^{-}v$ better, use isospin for missing channels:
 - $D^{**0} \rightarrow D^{+}\pi^{-} OK$
 - $D^{**0} \rightarrow D^0 \pi^0$ Not reconstructed. Half the rate of D⁺ π^-
 - $D^{**0} \rightarrow D^{*+}\pi^{-}$
 - $D^{*+} \rightarrow D^0 \pi^+ \text{ OK}$
 - $D^{*+} \rightarrow D^{+}\pi^{0}$ Not reconstructed. Feed-down to $D^{+}\pi^{-}$
 - $D^{**0} \rightarrow D^{*0}\pi^0$ Not reconstructed. Half the rate of $D^{*+}\pi^-$

How to solve the problem in practice

 π^{**} Selection

Based on topology:

• impact parameter significances w.r.t. primary, B and D vertices

Cuts are optimized using MC and background (WS) data:

Additional cuts only for D+:

• p_T > 0.4 GeV

• ∆R < 1.0

- $|d_0^{PV}/\sigma| > 3.0$
- |d₀^{BV}/ σ| < 2.5
- $|d_0^{DV}/\sigma| > 0.8$ $L_{xy}^{B\to D} > 500 \mu m$

Raw m** distributions

Measured in Δm^{**} , shifted by M(D^{(*)+}), side-band subtracted.

Efficiency Corrections

- 1) Correct the raw mass for any dependence of ε_{reco} on M(D**):
 - Possible dependence on the D** species (spin).
 - Monte-Carlo for all D** (Goity-Roberts for non-resonant), cross-checked with pure phase space decays.
 - Detector simulation shortcomings cause residual data/MC discrepancy: derive corrections from control samples (D* and D daughters)

2) Cut on lepton energy in B rest frame:

- Theoretical predictions need well-defined p_l* cut.
- We can't measure p₁*, but we can correct our measurement to a given cut:
 → p₁* > 700 MeV/c.

Corrected Mass and D** moments

Procedure:

- Unbinned procedure using weighted events.
- Assign negative weights to background samples.
- Propagate efficiency corrections to weights.
- Take care of the D⁺ / D^{*+} relative normalization.
- Compute mean and sigma of distribution.

Result:

$$m_{1} = \left\langle m_{D^{**}}^{2} \right\rangle = (5.83 \pm 0.16_{stat}) GeV^{2}$$
$$m_{2} = \left\langle \left(m_{D^{**}}^{2} - m_{1} \right)^{2} \right\rangle = (1.30 \pm 0.69_{stat}) Ge$$

Final Result

$$m_{1} \equiv \left\langle m_{D^{**}}^{2} \right\rangle = (5.83 \pm 0.16_{\text{stat}} \pm 0.08_{\text{syst}}) \text{ GeV}^{2}$$
$$m_{2} \equiv \left\langle \left(m_{D^{**}}^{2} - \left\langle m_{D^{**}}^{2} \right\rangle \right)^{2} \right\rangle = (1.30 \pm 0.69_{\text{stat}} \pm 0.22_{\text{syst}}) \text{ GeV}^{4}$$
$$\rho(m_{1}, m_{2}) = 0.61$$

$$M_1 \equiv \langle s_H \rangle - m_{\overline{D}}^2 = (0.467 \pm 0.038_{\text{stat}} \pm 0.019_{\text{exp}} \pm 0.065_{\text{BR}}) \text{ GeV}^2$$
$$M_2 \equiv \left\langle (s_H - \langle s_H \rangle)^2 \right\rangle = (1.05 \pm 0.26_{\text{stat}} \pm 0.08_{\text{exp}} \pm 0.10_{\text{BR}}) \text{ GeV}^4 ,$$

$\rho(M_1, M_2) = 0.69$

Pole mass scheme

$$\begin{split} \Lambda &= (0.397 \pm 0.078_{\text{stat}} \pm 0.027_{\text{exp}} \pm 0.064_{\text{BR}} \pm 0.058_{\text{theo}}) \text{ GeV} \\ \lambda_1 &= (-0.184 \pm 0.057_{\text{stat}} \pm 0.017_{\text{exp}} \pm 0.022_{\text{BR}} \pm 0.077_{\text{theo}}) \text{ GeV}^2 \end{split}$$

1S mass scheme

$$\begin{array}{ll} m_b^{1S} &=& (4.654 \pm 0.078_{\rm stat} \pm 0.027_{\rm exp} \pm 0.064_{\rm BR} \pm 0.089_{\rm theo}) \ {\rm GeV} \\ \lambda_1^{1S} &=& (-0.277 \pm 0.049_{\rm stat} \pm 0.017_{\rm exp} \pm 0.022_{\rm BR} \pm 0.094_{\rm theo}) \ {\rm GeV}^2 \end{array}$$

Systematics

Input parameters

- $D^{(*)+}$ Masses, in combining $D^{(*)}$ with $D^{**} \xrightarrow{} M$ [PDG errors]
- BR ($B \rightarrow D^+/D^{*+} m \rightarrow M$) [PDG errors]
- Experimental
 - Detector resolution [re-smear satellite sample by full resolution: ±60MeV]
 - Data/MC Efficiency discrepancies [measure P_t and m dependency on control sample, probe different fit models]
 - Decay models in MC [full kinematic description vs pure phase space]
 - P_I* cut correction [repeat measurement at various P_I* thresholds]

Backgrounds

- Scale [charge correlation WS/RS from fully reconstructed B: ±4%]
 - Optimization Bias [repeat optimization procedure on bootstrap copies of the sample]
 - Physics background [vary ±100%]
 - B \rightarrow X_c $\tau\nu$ [estimate τ/μ yield and kinematic differences using MC]
 - Fake leptons [no evidence in WS D+I+, charge-correlated negligible]

CP: hh modes

- Good agreement with B factories
- First measurement ever of $B_s \rightarrow KK$

$$\begin{split} \frac{BR(B_d \to \pi^{\pm}\pi^{\mp})}{BR(B_d \to K^{\pm}\pi^{\mp})} &= 0.24 \pm 0.06 \ (stat.) \pm 0.05 \ (syst.) \\ A_{\rm CP} &= \frac{N(\overline{B}_d^0 \to K^-\pi^+) - N(B_d^0 \to K^+\pi^-)}{N(\overline{B}_d^0 \to K^-\pi^+) + N(B_d^0 \to K^+\pi^-)} = -0.04 \pm 0.08 \ (stat.) \pm 0.01 \ (syst.) \\ \hline \frac{f_d \cdot BR(B_d \to \pi^{\pm}\pi^{\mp})}{f_s \cdot BR(B_s \to K^{\pm}K^{\mp})} &= 0.48 \pm 0.12 \ (stat.) \pm 0.07 \ (syst.) \\ \hline \frac{f_s \cdot BR(B_s \to K^{\pm}K^{\mp})}{f_d \cdot BR(B_d \to K^{\pm}\pi^{\mp})} &= 0.50 \pm 0.08 \ (stat.) \pm 0.07 \ (syst.) \\ \hline \frac{BR(B_s \to \pi^{\pm}\pi^{\mp})}{BR(B_s \to K^{\pm}K^{\mp})} &= 0.10 \ @ 90\% \ C.L. \end{split}$$

$$\frac{BR(B_d \to K^{\pm}K^{\mp})}{BR(B_d \to K^{\pm}\pi^{\mp})} < 0.17 @ 90\% C.L.$$
$$\frac{f_s \cdot BR(B_s \to K^{\pm}\pi^{\mp})}{f_d \cdot BR(B_d \to K^{\pm}\pi^{\mp})} < 0.11 @ 90\% C.L.$$

http://www-cdf.fnal.gov/physics/new/bottom/040722.blessed-bhh/

$$BR(\Lambda_b \to hh) < 22 \cdot 10^{-6} \ (90\% C.L.)$$

http://www-cdf.fnal.gov/physics/new/bottom/040624.blessed_Lb_hh_limit/

Mixing & Fourier Transforms

Samples of B_s Decays
Semileptonic Samples: D_s⁻ I⁺ X

~53 K events

m(ID_s⁻) distribution

Signal Yield Summary: Semileptonic

	muon	electron
$ID_s: D_s \rightarrow \phi \pi$	~ 24 K	~ 8 K
ID _s : D _s → K*K	~ 8 K	~ 3 K
$ID_s: D_s \rightarrow \pi\pi\pi$	~ 7.5 K	~ 2.5 K

ID ⁰ : D ⁰ \rightarrow K π	~ 400 K	~ 140 K
$ID^{*}:D^{0}\toK\pi$	~ 54 K	~ 21 K
ID ⁻ : D ⁻ \rightarrow K $\pi\pi$	~ 220 K	~ 80 K

B Lifetime Measurements

"Classic" B Lifetime Measurement

-0.1

0.0

0.1

 background p_{bkgd}(t) modeled from sidebands

0.3

ct, cm

0.2

Hadronic Lifetime Measurement

Hadronic Lifetime Results

Mode	Lifetime [ps] (stat. only)	
$B^0 \rightarrow D^- \pi^+$	1.508 ± 0.017	
B ⁻ →D ⁰ π ⁻	1.638 ± 0.017	
$B_{s} \rightarrow D_{s} \pi(\pi\pi)$	1.538 ± 0.040	

- World Average:
- B^0 1.534 \pm 0.013 ps⁻¹
- B⁺ 1.653 \pm 0.014 ps⁻¹
- B_s 1.469 \pm 0.059 ps⁻¹

Excellent agreement!

Semileptonic Lifetime Measurement

CDF Run II Monte Carlo

 $4.9 < m_{ID_a} \le 5.1 \text{ GeV/c}^2$

----- $4.3 < m_{ID_2} \le 4.5 \text{ GeV/c}^2$

2.9 < $m_{ID_x} \le 3.1 \text{ GeV/c}^2$

0.6

0.8

all

0.4

0.3

0.2

0.1

0.4

probability density

 neutrino momentum not reconstructed

$$K = \frac{p_T(lD)}{p_T(B)} \cdot \frac{L(B)}{L(lD)} \sqrt{\frac{p_T(B)}{p_T(B)}}$$

correct for neutrino on average

L ≈ 1 fb⁻¹

CDF Run II Preliminary

🛶 Data

– Fit

Ż

🧱 B, Signal

Physics Background

Combinatorial + False Lepton

lepton-D mass [GeV/c²]

Lepton SVT Track

 $\mathsf{B}_\varepsilon \to \mathsf{I} \mathsf{D}_\varepsilon \mathsf{X}$

3000

2000

1000

0

Candidates per 18 MeV/c²

ID_s ct* Projections

Semileptonic Lifetime Results

	Lifetime (ps)
Bs: Ds $\rightarrow \phi \pi$	1.51±0.04 stat. only
Bs: Ds \rightarrow K*K	1.38±0.07 stat. only
Bs: Ds $\rightarrow \pi\pi\pi$	1.40±0.09 stat. only
Bs combined	1.48±0.03 stat. only

- lifetimes measured on first 355 pb⁻¹
- compare to World Average: B_s : (1.469±0.059) ps

Proper Time Resolution

Proper Time Resolution

Reminder, measurement $\frac{(\Delta m_s \sigma_t)^2}{2}$ $N\epsilon D^2$ Ssignificance: Signif = B significant effect 1.5 A(t) 1.0 fitter has to correctly account for it 0.5 0.0 lifetime measurements not very -0.5 sensitive to resolution -1.0 -1.5¹ 2 3 a dedicated calibration is needed! Decay Time [ps]

Calibrating the Proper Time Resolution

- utilize large prompt charm cross section
- construct "Bs-like" topologies of prompt D_s⁻ + prompt track
- calibrate ct resolution by fitting for "lifetime" of "Bs-like" objects

B_s Proper Time Resolution

- event by event determination of primary vertex position used
- average uncertainty
 - ~ 26 µm
- this information is used per candidate in the likelihood fit

Layer "00"

- layer of silicon placed directly on beryllium beam pipe
- radial displacement from beam ~1.5 cm
- additional impact parameter resolution, radiation hardness

Flavor Tagging

Tagging the B Production Flavor

- use a combined same side and opposite side tag!
- use muon, electron tagging, jet charge on opposite side
- jet selection algorithms: vertex, jet probability and highest $\ensuremath{p_{\text{T}}}$
- particle ID based kaon tag on same side

Parametrizing Tagger Decisions

• use characteristics of tags themselves to increase their tagging power, example: muon tags

- tune taggers and parametrize event specific dilution
- technique in data works with opposite side tags

<u>Unbinned Likelihood Am_d Fits</u>

 fit separately in hadronic and $L \approx 355 \text{ pb}^{-1}$ **CDF Run II Preliminary** semileptonic sample 0.3 • per sample, simultaneously Soft Lepton Taggers 0.2 measure 0.1 tagger performance asymmetry 0 • Δm_d -0.1 projection incorporates data fit projection -0.2 several classes of tags B^o contribution B⁺ contribution $B \rightarrow e/\mu D X$ -0.3 0.05 0.1 0.15 0.2

semileptonic, ID⁻, muon tag

proper decay-length [cm]

hadronic: $\Delta m_d = 0.536 \pm 0.028$ (stat) ± 0.006 (syst) ps⁻¹ semileptonic: $\Delta m_d = 0.509 \pm 0.010$ (stat) ± 0.016 (syst) ps⁻¹ world average: $\Delta m_d = 0.507 \pm 0.004 \text{ ps}^{-1}$

Same Side Kaon Tags

- exploit b quark fragmentation signatures in event
- B⁰/B⁺ likely to have a π⁻/ π nearby
- B_s⁰ likely to have a K⁺
- use TOF and COT dE/dX info.
 to separate pions from kaons
- problem: calibration using only B⁰ mixing will not work
- tune Monte Carlo simulation to reproduce B⁰, B⁻ distributions, then apply directly to B⁰_s

Time Of Flight System

- timing resolution ~100 ps ! resolves kaons from pions up to p ~ 1.5 GeV/ c
- TOF provides most of the Particle ID power for SSKT

Calibrating SSKT

- Analogous to transfer scale factor in Opposite Side Tags
- Check dilution in light B meson decays

Data/MC agreement is the largest systematic uncertainty ! O(8%)

Fitter Preparation

Measurement Sensitivity

- estimated from scan on "blinded" data (randomized tags)
- unusual situation one single measurement more sensitive than the world average knowledge!

The Data

Amplitude Scan: Hadronic Period 1

Amplitude Scan: Hadronic Period 2

Amplitude Scan: Hadronic Period 3

Semileptonic Scan: Period 1

Semileptonic Scan: Period 2

Semileptonic Scan: Period 3

Hadronic Scan: Combined

Semileptonic Scan: Combined

Combined Amplitude Scan

Combined Amplitude Scan

Likelihood Significance

- randomize tags 50 000 times in data, find maximum $\Delta log(LR)$
- in 228 experiments, $\Delta log(LR) \ge 6.06$
- probability of fake from random tags = 0.5% \Rightarrow measure $\Delta m_s!$

Does the MC bias the answer?

- efficiency function is derived from Monte Carlo
- the Monte Carlo is derived with an input lifetime
- does the input lifetime bias the fit outcome?
- test: fit many Monte Carlos CDF Run II Monte Carlos with various input lifetimes $560 = B^* \rightarrow \overline{D}^0 \pi^*$: N
- derive efficiency function using one lifetime (500 µm)
- compare fit result to input lifetime
- observe no bias for ±50 µm
- measurement stat error ~7µr

Semileptonic Lifetime Fits (Winter '05)

- B⁰, B⁺ lifetimes within 20 μm of world average values
- combined ID_s⁻ lifetime fit result: 445 \pm 9.5 (stat) µm
- world average value: $438 \pm 17 \ \mu m$

"Prompt" Charm Background

- due to fake leptons, reconstruct some amount of prompt charm (D⁻, D⁰, D^{*-}) as B signal (in D mass signal region)
- can not disentangle from signal in any variable
- need to account for in lifetime, mixing fits
- extract shape from wrong-sign I^{-D} sample, use in fit

m(ID) fits

- signal distribution from Monte Carlo
 - distribution for "fake" leptons from data
- physics background distribution from MC
- fit linear combination to sideband subtracted data to extract fractions

Cross-Talk

- problem:
- ID⁻, ID⁰ are a mixture of B⁺, B⁰
- when fitting for lifetimes and mixing amplitude, account for this effect in fitter

I.K.F1 goes to backup Ivan K Furic, 3/14/2005

Tagger Calibration

- taggers are parametrized in I+track sample
- kinematically different from final ($D_s \pi$, $I+D_s^-$)
- final tagger calibration:
- perform B⁰ mixing fit in hadronic and semi-leptonic sample
- use per-event dilution, extract tagger scale factor:
- $p \sim \frac{1}{2} [1 \S S_D D_i \cos(\Delta m_D t)]$
- use per-event corrected dilutions in Δ m_s fit
- for hadronic sample, final calibration in D $^{\prime 0}\pi,~J/\psi$ K $^{(*)}$
- for semileptonic sample, final calibration in D^{-/O} I, D^{*-} I

I.K.F2

I.K.F2 move all this to backup Ivan K Furic, 3/14/2005

I.K.F3

<u>∆ m_d Fits</u>

hadronic: $\Delta m_d = 0.503 \pm 0.063$ (stat) ± 0.015 (syst) ps⁻¹ semileptonic: $\Delta m_d = 0.497 \pm 0.028$ (stat) ± 0.015 (syst) ps⁻¹

Slide 114

I.K.F3 unbinned likelihood fit

simultaneously measure

tagger performance

delta md Ivan K Furic, 3/14/2005

Kaon Tagging

- no straight way to determine tagger dilution from data unless B_s mixing is observed
- but we need to know the dilution to set the limit
- must use MC to measure dilution
- tune MC on B^0 , B^+
- predict B_s

SVT based Triggers

- hadronic channel
- require two SVT tracks
 - p_T>2GeV/c
 - $p_{T1}+p_{T2} > 5.5 \text{ GeV/c}$
 - opposite charge
 - 120 μm < SVT IP < 1 mm

- semileptonic channel
- require 1 Lepton + 1 SVT track
 - 1 muon/electron $p_T > 4 \text{ GeV}$
 - 1 additional SVT track with
 - p_T > 2 GeV
 - 120 μ m < SVT IP < 1 mm

Calibrating Opposite Side Tags

- Statistical Power of the tag: ϵD^2
 - Tagging efficiency (ϵ)
 - Tagging dilution (D = 1-2w)
 - w = mistag rate
- "Binned Tagger"
 - Tag1: ϵ_1 =50%, D₁ = 0.5
 - Tag2: ϵ_2 =50%, D₂ = 0.1
 - $<D> = (D_1 + D_2)/2 = 0.3$
 - $-.<D^2>=0.36$
- Dividing events into different classes based on tagging power improves εD²
- Calibration the tagger performance requires high statistics

- inclusive B →track+lepton
- 1.4 M events of flavor specific B

Non-Gaussian Tails

- amplitude corrected for effects of non-Gaussian tails
- correction derived from toy Monte Carlo, tuned to reproduce data

Lifetime Measurement: Semileptonic Subsample

- in addition to SVT bias, correct for missing energy (Kfactor)
- bin K-factor in I+D invariant mass to obtain narrow Kfactor distributions

Calibrating SSKT (1)

- use combined PID likelihood, select most "kaon-like" track as tagging track
- parametrize dilution based on maximum PID likelihood value
- verify kinematic distributions (p_T, tagging track p_T, multiplicity, isolation) of light B mesons in Pythia simulation
- verify particle ID simulation
- test for dependences on:
 - fragmentation model
 - bb production mechanisms
 - detector/PID resolution
 - multiple interactions
 - pid content around B meson
 - data/MC agreement

Final test: cross-check tagging power against high statistics light B decays

Mixing & Fourier Transforms

The Method

- We are looking for a periodic signal: Fourier space is the natural tool
 - Moser and Roussarie already mentioned this!
 - They use it to derive the most useful properties of A-scan
 - Amplitude approach is approximately equivalent to the Fourier transform

Amplitude from scan ↔ Re[Fourier]

- Aim: move to Fourier transform based analysis
 - Computationally lighter
 - As powerful as A-scan
 - As is, no need *in principle* for measurements of D, ε etc. (however these ingredients add information and tighten the limit)
 - Will provide an alternate path to the A-scan result!

Dilution weighted transform

- Discrete Fourier transform definition
 - Given N measurements $\{t_j\} \rightarrow \frac{1}{g(\omega)} = \sum_{k=1}^{N} D_k e^{-i\omega t_k}$
- Properties:
 - A particular application of
 - Average: $\langle g(\omega) \rangle = N \langle D \rangle f(\omega)$

(f(t) is the parent distribution of $\{t_j\}$)

- Corresponds to dilution-weighted Likelihood approach
- Errors computed from data:

 $\sigma^2(\operatorname{Re} g(\omega)) \approx \frac{N}{2} \left(\left\langle D^2 \right\rangle + o\left(\frac{1}{N}\right) \right)$

 $g(\omega) = \sum_{k=1}^{\infty} w_k e^{-i\omega t_k} \quad (\text{CDF8054})$

• NB: Errors can be calculated directly from the data!

•
$$\Delta(\omega) \equiv g_{\text{UnMix}}(\omega) - g_{\text{Mix}}(\omega)$$
 behaves "as you'd expect"

• While Δ and its uncertainty are fully data-driven, predicted Δ requires exactly the same ingredients as the amplitude scan fit

Properties of Δ ...

- **Re**[∆]
 - a) contains information equivalent to the standard amplitude scan
 - b) (Amplitude scan) \approx Re[Δ]
- Re[F] and $\sigma_{\text{Re[F]}}$ can be computed directly from data!
- b) \Rightarrow Sensitivity is exactly:

$$\frac{\Delta(\omega = \Delta m_s)}{\sigma_{\Delta}} = \sqrt{N\varepsilon \langle D \rangle^2} \sqrt{\frac{S}{S+B}} e^{-\Delta m^2 \sigma_{ct}^2/2} \sqrt{1 + \frac{\sigma_D^2}{\langle D^2 \rangle}}$$

Can we reproduce the A-scan it self?

Toy Example

- 1000 toy events
- • $\Delta m_s = 18$
- S/B=2.
- $\varepsilon D_{signal}^2 = 1.6\%$
- $\varepsilon D_{back}^2 = 0.4\%$
- Background and signal parameterized according to standard analyses
- Histogrammed σ_{ct}
- Best knowledge on SF parameterization

"A-scan" a` la fourier

$$\frac{\Delta(\omega)}{\text{ored.}\Delta(\omega; \Delta m_s = \omega)}$$

No actual fit involved: this method allows to flexibly study systematics!

B_s Mixing Perspectives

Analysis is pretty much defined! We know where we can improve:

- Statistics
 - Data (lumin.: $350pb^{-1} \rightarrow 600pb^{-1} \rightarrow 1 fb^{-1}$)
 - New Modes (e.g. $Bs \rightarrow Ds^*\pi > 2x$?)
 - ϵD^2 :
 - Additional taggers (SSK, OSK...)
 - Improve existing algorithms
- Proper time resolution
 - Refine event-by-event reconstruction
 - Optimal usage of kinematics for nonclosed modes

With data collected up to March 2006: sensitivity~SM value

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.