Advanced information on the Nobel Prize in Physics, 5 October 2004

Information Department, P.O. Box 50005, SE-104 05 Stockholm, Sweden Phone: +46 8 673 95 00, Fax: +46 8 15 56 70, E-mail: info@kva.se, Website: www.kva.se

Asymptotic Freedom and Quantum ChromoDynamics: the Key to the Understanding of the Strong Nuclear Forces

H. David Politzer

...taken from the Physics Nobel Prize press release (Oct 5, 2004)

The left-hand panel shows a collection of different measurements by S. Bethke from High-Energy International Conference in Quantum Chromodynamics, Montpellier 2002 (hepex/0211012). The right-hand panel shows a collection by P. Zerwas, Eur. Phys. J. C34(2004)41, JADE was one of the experiments at PETRA at DESY. NNLO means Next-to-Next-to-Leading Order computation in QCD.

http://nobelprize.org/physics/laureates/2004/press.html

FNAL/Rockefeller U., Aug. 30th 2007

Pedro A. Movilla Fernández, LBNL

Frank Wilczek

Towards Precision Top Quark Mass Measurements

Pedro A. Movilla Fernández Lawrence Berkeley National Laboratory

FNAL/Rockefeller U., Aug 30th 2007

Outline

Motivation

- Improving Measurements (I) Multivariate Method
- Improving Measurements (II) Calorimeter Simulation
- Towards Precision Top Quark Mass

Outlook

Top Quark Mass Implications

- It is a fundamental parameter.
- It is correlated to other SM parameters via electroweak corrections.

- Surprisingly large mass: A key to understand EWSB?
- Top quark and W boson mass predict the Higgs boson mass.
- Allow to impose constraints for physics beyond the SM.
- LEP limit: $m_{Higgs} > 114 \text{ GeV/c}^2 \oplus 95\% \text{ C.L.}$
- Electroweak fit: $m_{Higgs} = 76 + 33_{-24} \text{ GeV/c}^2$

Improving Measurements (I)

Multivariate Method

S/B in Multivariate Method

- Found **179** candidate events in **955/pb** of data.
- **Background contributions:**
 - non-W+jets containing fake leptons ~22%
 - W+light jets containing mistags ~ 40%
 - W+heavy flavor Wbb, Wcc, Wc \sim 33%
 - Background 1 tag 2 tags non-W QCD 5.5 ± 1.1 W+light (mistag) 9.5 ± 1.6 $W + b\bar{b}$ 4.3 ± 1.6 $W + c\bar{c}, W + c$ 2.9 ± 1.0 Single top 0.6 ± 0.1 < 0.1 Di-boson (WW, WZ, ZZ)Total Background 24.1±3.4
- Additional likelihood cut to clean up background and bad signal (ISR/FSR,W $\rightarrow \tau v...$)
- Number of candidates: $179 \rightarrow 149$

- Di-Boson WW, ZZ, WZ
- Single top

Multivariate Method Basics (1)

Event-by-event probability densitydetector level
observablesjet-quark
combinationsproton-parton
density functionstransfer
functions $\mathcal{P}_{t\bar{t}}(\mathbf{y}|m_t, \mathrm{JES}) \propto \sum_{i=1}^{N_{\mathrm{perm}}} w_i \int \mathrm{d}\Phi_6(\mathbf{x}) f_{\mathrm{pdf}}(q_1) f_{\mathrm{pdf}}(q_2) \times |M_{\mathrm{eff}}(m_t, \mathbf{x})|^2 \times W(\mathbf{y}|\mathbf{x}, \mathrm{JES})$ $\mathbf{v}_{\mathrm{b-tag weight}}$ b-tag weightphase spaceleading order signal matrix element

Transfer Functions

- Probabilities for a set of detector variables y to be measured given parton configuration x and JES.
- Smooth function of p(jet)/E(parton), dependent on quark flavor and jet η

In-Situ JES Calibration

 JES hypothesis giving W mass inconsistent with word average value/width penalizes the event probability.
 → Part of △JES becomes <u>statistical component</u> of △m, and scales down with integrated luminosity!

Multivariate Method Basics (2)

Integration

- Integration over full phase space intractable, make simplifying assumptions:
 - quark angles | charged lepton momentum | quark & lepton masses
- Seven integration variables remaining:
 - m_w^2 (had), m_t^2 (had), m_w^2 (lep), m_t^2 (lep), $\log(p_1/p_2)$ (light quarks), $p_x(t\bar{t})$, $p_y(t\bar{t})$
- Use of modified ("effective") propagators:
 corrects mismatch between ME, MC and integration assumptions

Matrix Element

- Use complete signal matrix elements (R. Kleiss and W.J. Stirling, Z.Phys. C40 (1988) 419) for a more consistent approach:
 - $qq \rightarrow tt + gg \rightarrow tt$ tree level amplitudes | finite width of W, top quark | non-zero bquark masses | complete spin correlations between top production and decay

Multivariate aspect

- Signal probability is weighted using a specially designed S/B discriminant.
- Requirements for the second variable
 - minimum top quark mass dependence ך
 - minimum JES dependence
 - maximum S/B discrimination

Extracting the Top Quark Mass

-20 8

-40

-60

-80

-100

-120

-140

-160

180

- Build the total 2-dim. likelihood and extract peak of profile likelihood:
- Correct mass and uncertainty value using calibration obtained from pseudo-experiments

$$M_{top} = 169.8 \pm 2.3 (stat. + JES) \pm 1.4 (syst.) GeV/c^2$$

 $M_{top} = 169.8 \pm 2.7 (tot.) GeV/c^2$
JES = 0.996 ± 0.018 (stat.)

Only 0.1 GeV/c² less precise than world's single best 1fb⁻¹ result!

170 175

180

185

190 195 m, (GeV/c²)

CDF Run 2 Preliminary 955 pb⁻¹

ଥି 1.1

1.08

1.06

1.04

1.02

0.98

0.96

0.94

0.92

160 165

all events, calibrated

Future Plans

- Major problem is the presence bad signal:
 - wrong jet-to-parton assignment

hurts resolution, causes bias, causes pull widths $\neq 1$

- ISR/FSR jets among the four leading jets: contamination is highest in least energetic jet
- Possible remedy:
 - → consider also a signal probability which ignores 4th leading jet
 - → introduce a bad signal discriminant (ANN)
- Get rid of simplifying integration assumptions and effective propagators:
 - Requires expansion of integration phase space (up to 19 dimensions)
- Improve background discrimination:
 - ANN discriminant with no top quark mass and JES dependence?
- Introduce a-priori JES constraint

Improving Measurements (II)

Calorimeter Simulation

Total JES Uncertainty

- Above plot reflects simulation performance of CDF-II publications (excluding recent improvements)
- Calorimeter simulation uncertainties are the dominant source of uncertainty (specially if no JES in-situ calibration possible).

GFLASH in a Nutshell

- GFLASH treats calorimeter as a single effective medium.
- EM and HAD responses are related to MIP response

Run-II improvements

- Single track triggers with thresholds up to 15 GeV/c.
- Single charged particle response analysis.
- In-situ tuning extended up to 40(20) GeV/c in Central (Plug)

- $T(r) = \frac{2rR_0^2}{(r^2 + R_0^2)^2}$ r: radial distance from shower center z = shower depth
- log-normal distribution gths)
- Mean & width of R₀:

$$\langle R_0(E,z) \rangle = [R_1 + (R_2 - R_3 \log E) z]^n$$

$$\frac{\sigma_{R_0}(E,z)}{\langle R_0(E,z) \rangle} = [(S_1 - S_2 \log E)(S_3 + S_4 z)]^2$$
hadrons: n=1
photons, electrons: n=2

- Hadronic showers: linear dependence on shower depth
- Logarithmic dependence on incident particle energy

16

Lateral Profile

7 parameters

integrated lateral profiles

longitudinal profile

shower depth

Lateral Profile Tuning

FNAL/Rockefeller U., Aug. 30th 2007

Lateral Profile Tuning (2)

- Consistent global tuning in Central and Plug
- Lateral profiles must match as perfectly as possible to avoid bias in absolute response tuning

 $f_i(E) \neq a + b \tanh(c \log E + d)$ (typically)

...primary switches for Run-II tuning improvements!

19 FNAL/Rockefeller U., Aug. 30th 2007

Pedro A. Movilla Fernández, LBNL

- the class fractions f's,

the α 's and β 's

Absolute Response Tuning (Central)

- TOT and MIP is primary reference: shower almost fully contained → response less dependent on shower starting point & particle flavor (appendix)
- TOT is basis for JES uncertainty determination

FNAL/Rockefeller U., Aug. 30th 2007

20

Pedro A. Movilla Fernández, LBNL

Absolute Response Tuning (Plug)

- Priority to get TOT right
- Moderate discrepancy in MIP

Simulation Performance

- Better and consistent tuning.
- Percentages directly translate into JES uncertainties (next page)

Jet Energy Scale Uncertainties

$$\frac{\Delta E}{E} = \frac{1}{E} \sum_{i} p_{i} \left\langle \frac{E_{i}}{p_{i}} \right\rangle \Delta \left\langle \frac{E_{i}}{p_{i}} \right\rangle$$

- Derived from "first principles" :
- Convolution of MC/data difference with the jet's particle spectrum and E/p response
 - \rightarrow absolute JES uncertainty

Absolute JES Uncertainty

Impact to performance top quark mass measurements:

- w/o in situ JES: di-lepton channel
- w/ in situ JES but a-priory JES constraint: all-jets channel
- reduction of residual JES uncertainties: all analyses

 $\begin{array}{l} \text{Reduction of} \\ \Delta M_{top} (Absolute), \\ \Delta M_{top} (JES_{stat})? \end{array}$

... more comments later!

Jet Shapes

- Much better agreement
 - \rightarrow reduces bias in relative correction Plug to Central
 - \rightarrow impact to OOC uncertainties

26

(next slides)

27 FNAL/Rockefeller U., Aug. 30th 2007

Pedro A. Movilla Fernández, LBNL

Pedro A. Movilla Fernández, LDI

Towards Precision Top Quark Mass

Di-Lepton Channel

All-Jets Channel

ME assisted Template Method, 0.94fb⁻¹ (in situ JES calibration)

$$L = L_{1 \text{ tag}}(m_t, \text{JES}) \times L_{2 \text{ tag}}(m_t, \text{JES}) \times \exp\left[\frac{-(\text{JES} - \text{JES}_{\text{exp}})^2}{2}\right]$$

0.2

 $M_{top} = 171.1 \pm 3.7 (stat.+JES) \pm 2.1 (syst.) \text{ GeV/}c^2$

0.7

Stat b-JES Residual Relative Absolute

expect to improve

CDF Runll preliminary L=943pb⁻¹

JES (g)

000

0.5

0.5

a priori JES constraint

Dominant systematic uncertainties:

- gluon FSR,
- background modeling \succ O(~1GeV/c²) each

0.4

- generator

Best all-jets measurement.

JES

GeV/c² 2.4

Top Mass (GeV/c²)

JES Uncertainties (Lepton-Jets)

m, (GeV/c²)

ISR/FSR modeling O(~0.5GeV/c²)

165

170

Best single measurement.

- Can we trust increased precision? Are we biased by unknown systematics (e.g. color reconnection)?
- Need higher precision in non-golden channels with different hadronic activity to verify \rightarrow reduction of Δ_{1FS} essential (e.g. di-lepton channel)
- Alternate less JES sensitive methods important
 - lepton p_{τ} | decay length technique (appendix)

Outlook

Combined CDF&D0 result (March '07): 1.1% $M_{top} = 170.9 \pm 1.8 \text{ GeV}/c^2$

- Lessons from Run-II: Improvements are based on
 - → High b-tagging efficiency
 - → Improved analysis techniques
 - ➔ In-situ W-jj calibration of the JES

- Claiming high precision requires mutual verification in <u>all</u> channels.
- We are therefore awaiting how future measurements will benefit from reduced JES uncertainties through better calorimeter simulation.
- Limiting factor at the end of Run-II expected to be ISR/FSR (=theoretical).
- Goal: $\Delta M_{top} < 1 \text{ GeV/c}^2$ at the end of Run-II (=5-10 years LHC!!!)

Tevatron might be the lasting legacy for the top quark mass!

Backup Slides

Top Quark Production

36 FNAL/Rockefeller U., Aug. 30th 2007

Pedro A. Movilla Fernández, LBNL

Top Quark Signatures

- BERKELEY LAD
- SM top quark decays weakly before hadronization → Can measure its properties directly: Mass, Spin, Charge ...
- BR (t \rightarrow Wb)=99.9% (CKM matrix)

Challenges of Top Quark Physics

Requires <u>full</u> detector capabilities:

- Clean identification of electrons and muons
 → charged leptons from W decay
- Undetected ("missing") energy
 → neutrino reconstruction
- Secondary vertex tagging

 → quark flavor (b or light)
- Calorimeter clusters ("jets") → quark reconstruction

...crucial for reduction of background and jetquark combinatorics tt tagging efficiency ~ 55%
 tt fake rate ~ 0.5 %

fraction of tagged b jets vs. jet transverse energy

Determination of the jet energy scale (**JES**)

- Correction of jet energies for detector effects, hadronization, multiple interactions, ...
 → momenta of hadronic top decay products!
- JES currently known at ~3% level → dominant uncertainty in all top quark mass measurements!

More details in 2nd part of talk

Measurement Strategies (1)

Template Method (TM):

- Classical Run-I strategy
- Calculate <u>one observable</u> per event correlated with M_{top}.
- Compare simulated distributions for signal+ background with varying M_{top} with data to obtain M_{top}.
- + computationally simple

 limited kinematic information, just <u>one number</u> per event

Important extensions developed in Run-II, e.g. use of a 2nd variable for JES calibration.

FNAL/Rockefeller U., Aug. 30th 2007

Pedro A. Movilla Fernández, LBNL

Measurement Strategies (2)

Matrix Element Method (ME):

- Calculate a <u>per-event probability density</u> curve (from matrix element calculations) for signal and background as function of M_{top}.
- Multiply probabilities to extract most likely M_{top} for the whole data sample.

- extremely CPU intensive numerical integrations
- ME Method extended using 2-dimensional likelihoods (M_{top}, JES)
- Additional event weighting using S/B discriminants, b-tagging information etc.

Integration

- Integration over full phase space in 22 dimensions intractable, make simplifying assumptions:
 - quark angles / charged lepton momentum are perfectly measured
 - quark / charged lepton / neutrino masses are known
- Seven integration variables remaining: m²_w (had), m²_t (had), m²_w (lep), m²_t (lep), log(p₁/p₂) (light quarks), p_x(tt), p_y(tt)

• Effective propagators are used when integrating over mass variables \rightarrow corrects for mismatch between ME, MC and integration assumptions

S/B Discriminant

Many candidates to choose from:

- Energy variables (e.g. jet transverse energy sum) higher S/B discrimination but also largely correlated with m, /JES
- Shape variables (e.g. aplanarity) lower S/B but smaller m₁/JES dependence

160

180 m/GeV

default $(c_1, c_2) = (1, 1)$

 $H_{\text{TZ}} = \sum_{i=2..4} p_{\text{T}}^{(i)} / \left(\sum_{i=1..4} p_{z}^{(i)} + p_{z}^{(\text{lep})} + p_{z}^{(\nu)} \right)$ $p_{z}^{\nu} : \text{smallest of neutrino p_z solutions}$

 $p_{\rm T}^{\rm (min)}$: smaller $p_{\rm T}$ of the min. separation pair

Linear combination of variables

 $A = 1.5Q_1$ (aplanarity)

 $D_R = \min(\Delta R_{ii}) \times p_T^{(\min)} / E_T^{lep}$

 \rightarrow m, / JES systematics mutually cancel

 $Q_1 < Q_2 < Q_3$ EV of $T_{\alpha\beta} = \sum_i p_{\alpha}^{(i)} p_{\beta}^{(i)} / (p^{(i)})^2$

$$V = \left(\hat{c}_1 A + \hat{c}_2 D_R + \hat{c}_3 H_{TZ}\right) \times N$$

...systematic fine tuning of coefficients (appendix)

 H_{TZ}

180 m,/GeV

FNAL/Rockefeller U., Aug. 30th 2007

42

FNAL/Rockefeller U., Aug. 30th 2007

Pedro A. Movilla Fernández, LBNL

Background Treatment

- Additional likelihood cut applied to clean up background and bad signal (ISR/FSR, $W \rightarrow \tau v...$)
- Improves bias and resolution
- Number of candidates: $179 \rightarrow 149$

Type of event	1-tag	>1-tag	
Good signal	94.7%	94.1%	
Bad signal	73.7%	80.2%	
Background	63.1%	57.5%	

Uncertainties

Systematic source		Systematic uncertainty (GeV)		
	Residual JES	0.28		
	PDFs	0.46		
	ISR	0.75 ± 0.36		
	FSR	0.67 ± 0.40		
	MC generator	0.44 ± 0.43		
Gluon fraction		0.05		
	Background: fraction	0.20		
Background: composition		0.39		
Background: average shape		0.29		
Background: Q^2		0.30		
Calibration b-JES b-tag E_T dependence		0.14		
		0.23		
		0.02		
Permutation weighting		0.06		
	Multiple interactions	0.05		
	Lepton P_T	0.05		
	Total	1.39		

• Total systematic:					
$\Delta M_{top}(syst.) = 1.4 \text{ GeV/c}^2$					

- Largest contribution from modeling of the initial and final state gluon radiation: $\Delta M_{top}(ISR+FSR) = 1.0 \text{ GeV/c}^2$
- Statistical component: ∆M_{top}(stat.+JES) = 2.3 GeV/c²

 $= 1.6(stat.) + 1.7(JES) GeV/c^{2}.$

• Residual JES uncertainty: $\Delta M_{top}(JES_{res}) = 0.3 \text{ GeV/c}^2.$ (η/p_{+} dependence of jet corrections)

Systematics

	N					Lepton+Jets (ME 370 pb ⁻¹)	
	${ m Jncertainties}\ [{ m GeV/c^2}]$	Di-Lept (ME 1030 pb ⁻⁺)	03/07/2007) (ME 955 pb ⁻¹)	.ll-Jets (TM 940 pb ⁻¹)		Source of Uncertainty	b-Tagging Analysis
	Statistical	3.9	1.6	2.8	 г	Statistical uncertainty and jet energy scale	+4.1 -4.5
	JES	3.5	1.5	2.4	l	JES only	3.5
	Residual JES b-JES		0.4 0.6	0.7 0.4		Signal modeling Background modeling	± 0.46 +0.40
model	ISR/FSR PDF	0.4	1.1 0.1	1.2 0.5		PDF uncertainty b fragmentation b/c semileptonic decays	$\pm 0.16 -0.39$ ± 0.56 ± 0.05
physics	Generator MC statistics Background model Sample composition	0.9 0.7 0.2 0.7	0.2 0.2	1.0 0.4 0.9 0.1		Detector modeling: $JES \ p_T$ dependence b response (h/e)	± 0.19 +0.63 -1.43
	Lepton p_T b-tag p_T dep.	0.1	0.2 0.3			Trigger b tagging	$+0.08 -0.13 \pm 0.24$
	Multiple interactions Method	0.2 0.6	0.1	0.2		Method: Signal fraction QCD contamination	$\pm 0.15 \\ \pm 0.29$
	Total systematics (excluding JES)	1.7	1.4	2.1		MC calibration Total systematic uncertainty	± 0.48 +1.2 -1.8
I		1	1		J	Total uncertainty	+4.3 -4.9

- Non-JES systematics mainly dominated by physics model.
 - amount of FSR gluon radiation, hadronization model,...

... will limit or knowledge of M_{top} in future!

FNAL/Rockefeller U., Aug. 30th 2007

46

Pedro A. Movilla Fernández, LBNL

Absolute CEM and CHA Response

- These are <u>not primary tune</u> observables but serve as cross checks
- Responses dependent on shower start, shapes are more complicated than TOT and MIP
- Reasonable agreement

Parametrization (Central)

 Smooth parametrization connecting in-situ tuning and test beam tuning result.

Parametrization (Plug)

 Smooth parametrization connecting in-situ tuning and test beam tuning result.

PEM Relative Sampling fraction

PHA Relative Sampling fraction

Absolute Response Tuning (Crack)

Tower 10

sig: EM=3x1 strip, HAD=3x1 strip bck: 1.5 x both side towers

Comparison with 57 GeV Test Beam Data

Tuning Uncertainties

- E/p analysis
 - For TOT and MIP we consider Gaussians so we are insensitive to background contamination (e.g.: high p muons or electrons).
 - Treatment of uncorrelated background ensures that we can compare E/p from different event activity.
 - CES partially suppresses correlated background in Central.
 - Not sure about correlated background sources in the Plug (we don't use PES) at least we are using a reasonable MC tool (Pythia) to model background.
 - Differences due to momentum spectrum has proven to be negligible.
- Lateral profile dependence
 - Profile mismatch can cause leakage effects .
 - After tuning this effect should be under control.
- Flavor dependence
 - MC mixture used at low p: minimum bias composition at high p: pions/kaons/protons = .6/.3/.1
 - very weak flavor dependence for primary variable TOT
 - moderate effect for MIP response (CHA, PHA sampling fractions)
 - larger effect for EM (CEM, PEM sampling fractions)
 - negligible effect for hadronic E/p profiles due to normalization

Flavor Dependence

 Extreme scenario: consider individual flavors (FAKEEV flavor/anti-flavor = 50%/50%) NB: Minbias spectrum dominates low p.

- GFLASH treats pion/kaon/proton showers equally! Flavor dependence is pure effect of different typical shower starts given by GEANT cross sections!
- Little /moderate effect in TOT/ MIP due to almost complete coverage of shower shapes.

Lateral Profile Dependence

Effect of varying the lateral profile core parameter R₁ from 0.05 to 0.50.
 R₁ values used in Gen-5: 0.490 (p<5GeV), 0.015 (p>5GeV)

FNAL/Rockefeller U., Aug. 30th 2007

54

Pedro A. Movilla Fernández, LBNL

Electron Response

- Electromagnetic scale is tuned in-situ using electrons from J/ ψ (low p)or W (high p) decay
- MC data discrepancy …
 - e pointing to inner 0.9x0.9 of target tower: 0.5%
 - e pointing to ϕ cracks (WLS, steel bar): **1.6%**

- Response along φ is monitored using electron pairs from Z⁰ decays in a mass window around Z⁰ mass. One keg in Central target tower, the other leg probes φ profile.
- New map correction in phi plus MC scaling by $0.5\% \rightarrow \phi$ profile has significantly improved.

56 FNAL/Rockefeller U., Aug. 30th 2007

p Tean [GeV/c]