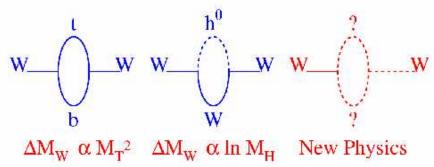
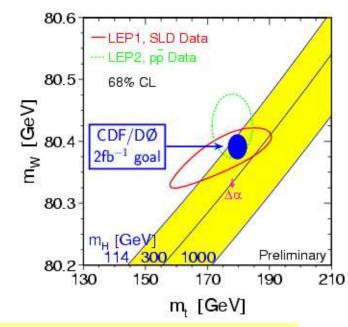
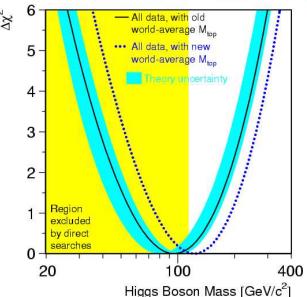
Top Mass Measurements at CDF

BEACH 2004, Chicago, July 2


Pedro Movilla Fernández (LBNL) for the CDF Collaboration




Why Measure the Top Mass?

- Fundamental parameter
- Correlated to other SM parameters via electroweak corrections

Updated m_t world average:

[Nature <u>429</u> (2004) 638]

 $m_t = 178.0 \pm 4.3 \text{ GeV/c}^2 \text{ (old: } 174.3 \pm 5.1 \text{ GeV/c}^2\text{)}$

Updated constraint on Higgs mass:

$$m_{H} = 113^{+62} GeV/c^{2}$$
 (old: $96^{+60} GeV/c^{2}$)

 $m_{_{\rm H}} < 237 {\rm GeV/c^2}$ (old: $m_{_{\rm H}} < 219 {\rm GeV/c^2}$)

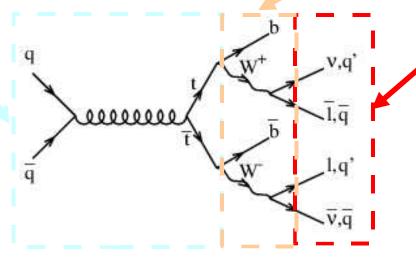
Precise measurement provides stringent SM tests

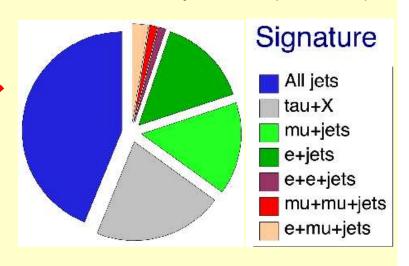
SM Top Quark Signatures

Top Production (Tevatron):

mainly in pairs via 85% qq annihilation 15% gg fusion $\sigma_{tt}(1.96\text{TeV})\sim6.7\text{pb}$ (theory)

Top Decay:


τ~10⁻²⁴sec t→Wb BR~99.9%


W Decay:

defines top event signature

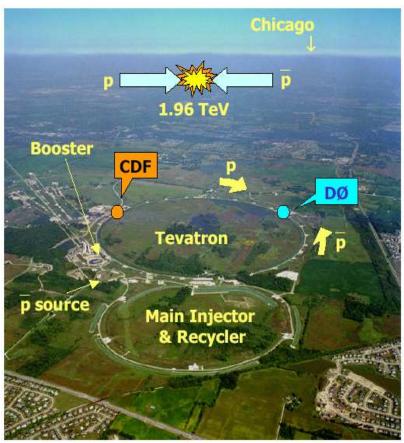
 $W\rightarrow q\bar{q}'$ hadronic (BR=6/9)

W→lv leptonic (BR=3/9)

General Event Topology:

- -spherical events (tt production near threshold)
- -2 b jets from top quarks (crucial for ident.)
- -jets/leptons with high transverse energy E_T
- -large missing E_T in leptonic decay modes

CDF II Top Mass Measurements:


Dilepton: 2 e/μ, 2 jets, large miss. E_T (BR=5%, S/B~10)

Lepton+Jets:1 e/μ, 4 jets, large miss. E_T (BR=30%, S/B~1)

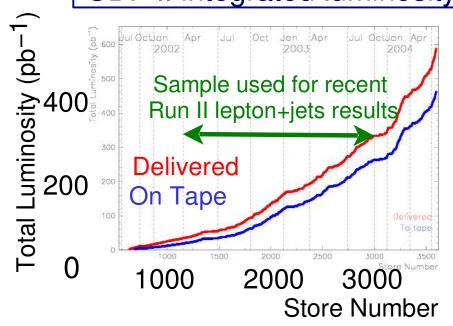
Tevatron Run II

Total on tape (now): 460 pb⁻¹

Analysis samples:

Dileptons: 126 pb⁻¹

Lepton+Jets: 162 pb⁻¹


(with at least 1 SVX tag)

CM energy 1.96TeV (Run I: 1.8TeV)
Increase of tt cross section by ~30%

Substantial increase of luminosity:

Record: ~8x10³¹cm⁻²s⁻¹

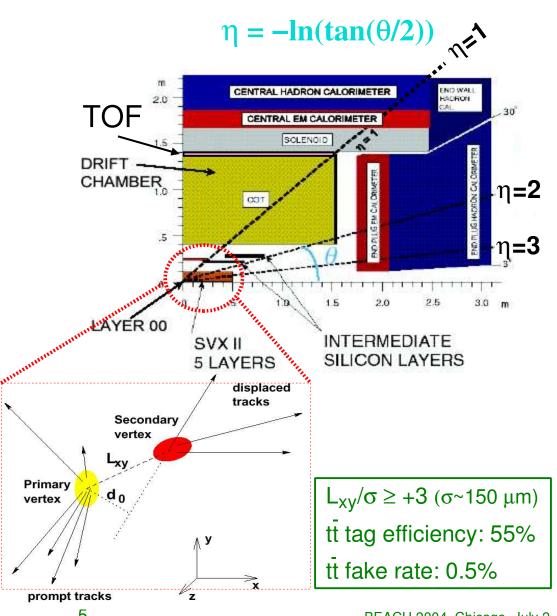
CDF II integrated luminosity

Top Event Selection (Lepton+Jets)

CDF II detector:

- Calorimeter (EM, HAD)
- Tracking system
- Vertex detector

Basic kinematical cuts:


- 1. One lepton E_T>20 GeV
- 2. Missing E_T>20GeV
- 3. Four jets $E_T>15 GeV$, $|\eta|<2$ (depend on analysis)
- 4. At least one SVX tag

SVX b jet tagging:

Identification of displaced

decay vertices from long-lived

B–hadrons

Methods

I. Template Method (**TM**) (= Run I Method):

- Kinematic fitter to reconstruct top mass
- Kinematic constraints
- Use "best" of 12 combinations (4 if double b tag)
 (6 jet-quark combinatorics, 2 neutrino solutions)
- 1-dimensional templates parametrized as function of top mass

II. Multivariate Template Method (MTM):

- Refined kinematic fitter with jet energy scale optimization
- Kinematic constraints
- Use "best" of 12 combinations (4 if double b tag),
 Weight according to correct permutation probability
- Multidimensional non-parametric templates

III. Dynamical Likelihood Method (**DLM**):

- Matrix element likelihood
- Use all 12 combinations (4 if double tag)
- Use calorimeter transfer functions

Template Method (TM)

Reconstruct invariant top mass for each event

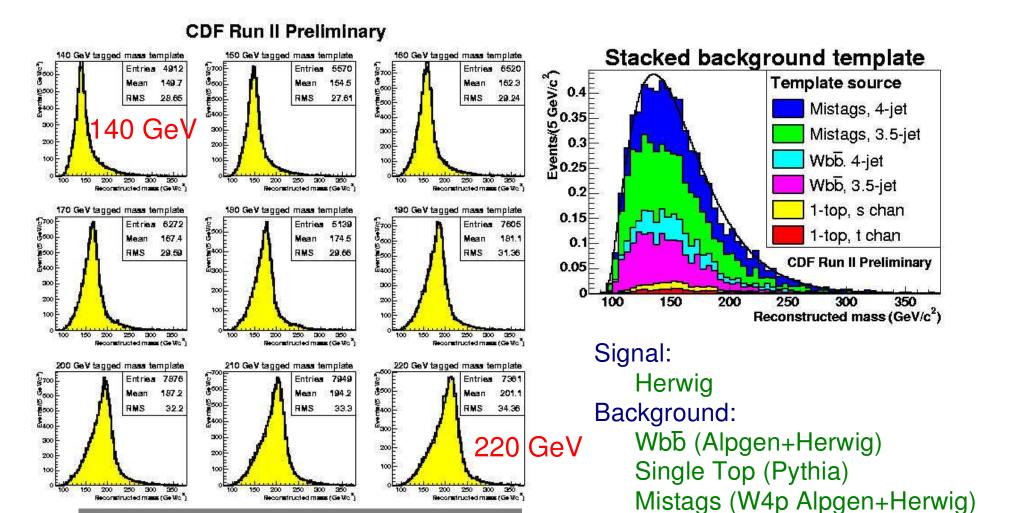
• Minimize χ^2 expression, kinematic constraints $m_t=m_{\overline{t}}$, $M_{W^+}=M_{W^-}$, $p_{t\overline{t}}$ balance;

$$egin{array}{lll} \chi^2 & = & \sum_{\ell,jets} rac{\left(\hat{P}_T - P_T
ight)^2}{\sigma_{P_T}^2} + \sum_{i=x,y} rac{\left(\hat{U}_i' - U_i'
ight)^2}{\sigma_{U_i'}^2} + rac{\left(M_{\ell
u} - M_W
ight)^2}{\sigma_{M_W}^2} \ & + rac{\left(M_{jj} - M_W
ight)^2}{\sigma_{M_t}^2} + rac{\left(M_{\ell
u j} - M_t
ight)^2}{\sigma_{M_t}^2} + rac{\left(M_{jjj} - M_t
ight)^2}{\sigma_{M_t}^2}. \end{array}$$

Combinatorial problem: 12(4) solutions for 1(2) b tags
 2 p_z neutrino solutions, 6(2) jet–parton combinations;
 (we don't distinguish between q and q' from W decay); Use smallest χ² solution;

Build top mass templates from MC samples

for signal process with different $\mathbf{m_t}$ and for the background processes;

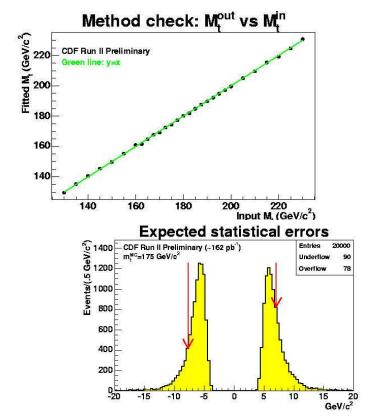

Calculate top mass likelihood

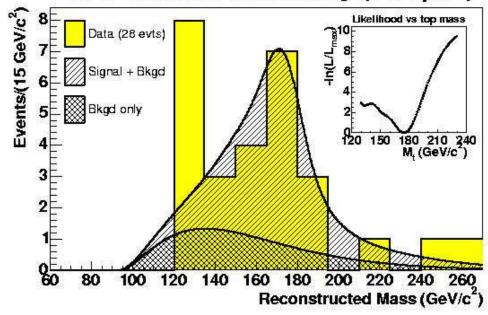
- Use templates as probability densities to be compared with data in order to derive a top mass probability for each event
- Top mass is value of m_t which maximizes likelihood for the whole data sample
 product of event-by-event top mass probabilities (unbinned likelihood fit)

TM Templates

Signal templates are parametrized by continuous functions of mt

Reconstructed invariant top mass


TM Results


28 tt candidate events

 6.8 ± 1.2 background events (expected value from cross section measurement)

... fixed in the fit

CDF Run II Preliminary (162 pb⁻¹)

$$M_{top}=174.9^{+7.1}_{-7.7}(stat.)\pm6.5 (syst.) GeV/c^2$$

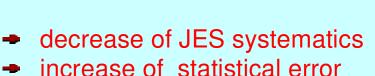
Jet energy systematic: ±6.3 GeV/c²

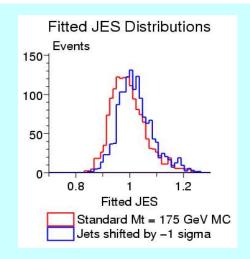
Systematic Uncertainties

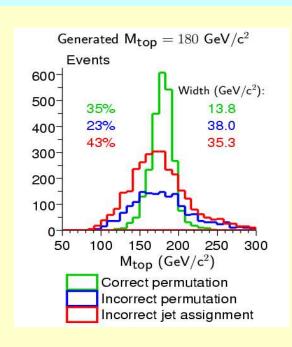
Jet energy systematics are by far dominant

Jet Energy Scale	6.3
Initial State Radiation	0.4
Final State Radiation	0.9
Parton Distribution Functions	0.2
Generators	0.4
Other MC Modeling	0.7
Background Shape	0.8
B-tagging	0.1
Total	6.5

Preliminary, will be reduced soon!


Relative to Central	3.0
Central Calorimeter Response	4.6
Corrections to Hadrons (Absolute Scale)	2.2
Corrections to Partons (Out-of-Cone)	2.3
Total	6.3




Multivariate Template Method (MTM)

 Kinematic fitter for event reconstruction: Includes adjustable jet energy scale factor (JES) to be calibrated in the reconstruction of the W →qq' decay by using W mass constraint; Multiply all jet energies with JES scale factor

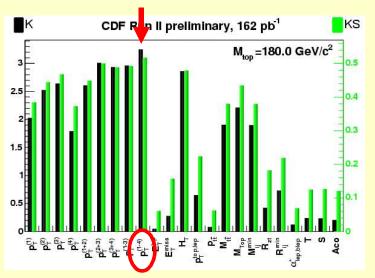
2) Three types of signal templates:

- Correct permutation samples (CP)
- Incorrect permutation samples (IP)
- Incorrect jet assignment samples (IJ)

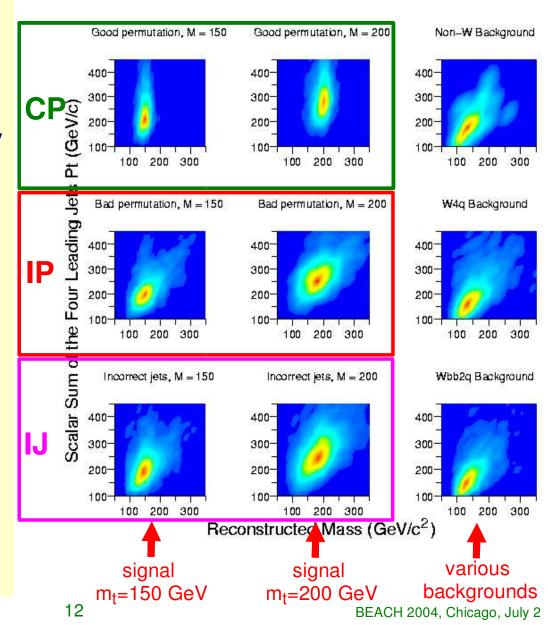
Uses information from fit and from tt production/decay dynamics to predict CP probability and to weight signal templates accordingly. Useful quantities are

- fit χ^2 (permutation i)– χ^2 (best permutation)
- cos∠(lepton, leptonic b) in W rest frame
- tt spin correlation term

"Knowledge" of template type improves mass resolution

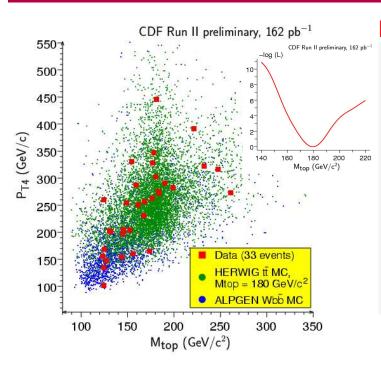


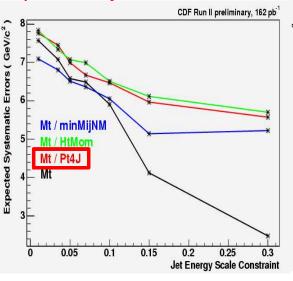
MTM Templates



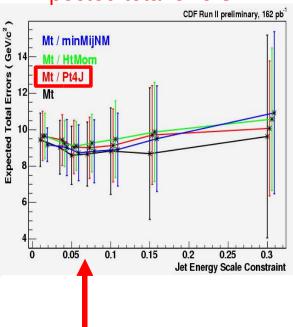
3) Multivariate Templates:

- In addition to the reconstructed top variables are used to improve S/B separation (avoids hard cuts)
- Sum p_T of 4 leading jets favored by statistical divergence measures


 Kernel Density Estimation is used to create probability densities (<u>non-parametric</u> density reconstruction technique)



MTM Results



Expected systematic errors:

Expected total errors:

33 candidate events

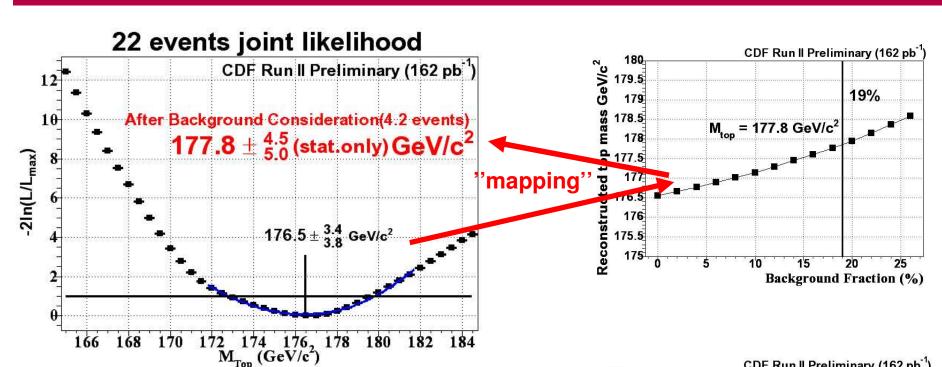
$$M_{top}=179.6^{+6.4}_{-6.3}$$
(stat.)±6.8 (syst.) GeV/c²

Fitted background fraction:

f=0.34±0.14

- JES constraint in kinematic fit can be used to treat with systematic errors
- JES constraint optimized w.r.t. total error
- Several variable sets with similar performance; use the one with best S/B discrimination
- JES constraint more important in the future as statistical error decreases

Dynamical Likelihood Method (DLM)


DLM is **original CDF method** (K. Kondo, J. Phys. Soc. 57 (1988) 4126) It attempts to use as much amount of info on top quarks provided by SM

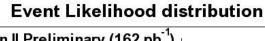
Parton distribution Probability of pT function of tt system $L^{(i)}(m_t) = \int \sum_{perm} \sum_{y=cl} \frac{2\pi^4}{\text{flux}} |\mathcal{M}|^2 \overline{F(z_1, z_2)} f(p_t) w(\mathbf{x}, \mathbf{y}; m_t) d\mathbf{x}$ Production/Decay Matrix Element Signal only, no bkg M.E. ... correct for this! w jet response comparison(Et) Transfer function for jet energies: V jet response — 15<Et≤25 0.18 Bayesian probability that x was generated 0.16 when y was reconstructed (derived from tt MC) 0.14 •are expressed as function of 0.12 95<Et (E(parton)–E(jet))/ E(parton) 0.1 •are dependend on jet type (W or b jet) 0.08 0.06 •are parametrized in jet E_T and η bins 0.04 W jets 0.020 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 Et(MC)-Et(Jet)/Et(MC)

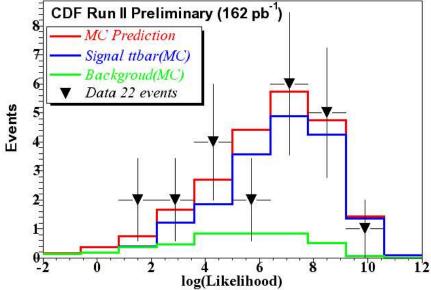
DLM Results

22 candidate events

Background fraction: 19% After applying mapping function (errors scaled accordingly):

$$M_{top}=177.8^{+4.5}_{-5.0}(stat.)\pm6.2 (syst.) GeV/c^2$$


DLM Event-by-Event



Event-by-Event maximum likelihood mass

Maximum Likelihood Mass CDF Run || Preliminary (162 pb⁻¹) Signal MC: M_{top} = 175GeV/c² Backgroud(MC) Data 22 events 130 140 150 160 170 180 190 200, 210 220 Maximum Likelihood M_{Top} (GeV/c²)

Event Likelihood $L^{(i)} = \int L^{(i)}(M) dM$

Comparison data / MC ok!

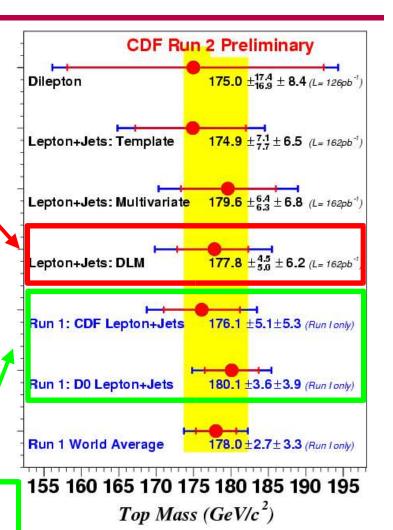
Summary and Outlook

Three recent CDF II measurements of the top mass in the lepton+jets channel:

DLM method provides smallest error (attempts to use max. theory information)

- Future improvements
 - More data (Tevatron performing well!):

160 pb⁻¹ present results


400 pb⁻¹ end 2004 1000 pb⁻¹ end 2005

4400-8500 pb⁻¹ end Run II

Reduce jet energy systematics (priority!) Expect significant improvement in calorimeter simulation!

Big potential to refine/extend analysis methods

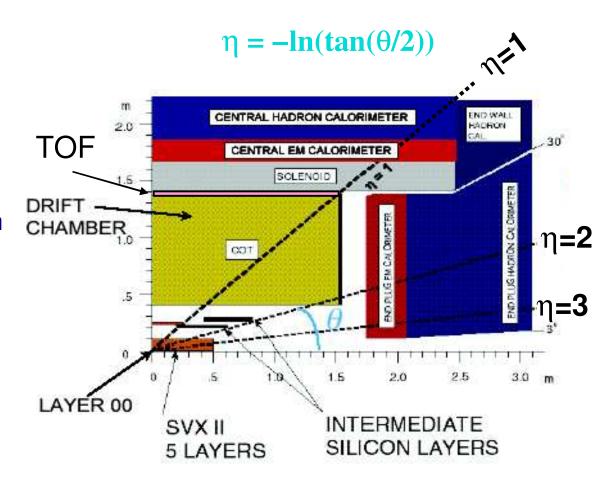
> Best single measurements from Run I lepton + jets

Precision measurement is coming ...

Backup Slides

CDF II Detector

CDF underwent substantial upgrades:


Improved geometrical acceptance:

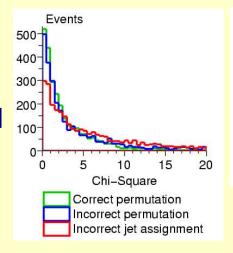
- SVX coverage $|\eta| < 2$, 8 layers
- Expanded Muon system
- Forward calorimeter

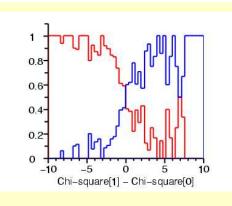
New central tracker

96 layers

Time of Flight
Trigger, DAQ ...

MTM Correct Permutation Probability

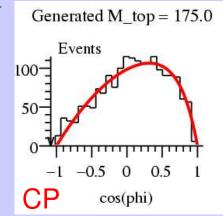

CP probability:

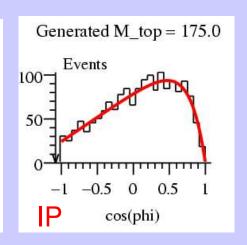

- Fit χ^2 (best) not useful quantity
- $\chi^2(i) \chi^2$ (best) does better job

Use a "permutation diffusion" inspired model:

• 2 permutation case:

 $p_{CP} \propto 1/\exp(\chi^2(2nd best) - \chi^2(best))$



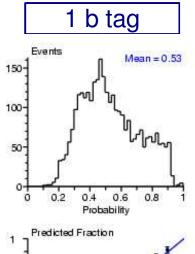

Blue: perm. 0 is correct

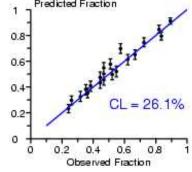
Red: perm. 1 is correct

Enhance approach by adding kinematic information

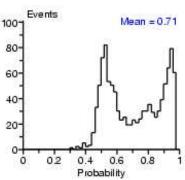
- cos∠(lepton, leptonic b)
- tt spin correlation term
- Define discriminator κ=p_{X|CP} / p_{X|IP+IJ}
 to be calculated using MC
- Use Bayes Statistical techniques to derive the probabilities
 PCP|X = P (PCP, κ)

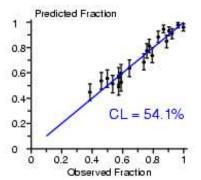
MTM Correct Permutation Probability (2)




$$p_{cp} = \frac{a_b}{\sum_{i=1}^{12} a_i \exp\left(-\frac{\chi_i^2 - \chi_b^2}{w_e(\chi_i^2 + \chi_b^2)}\right)}$$

$$w_e(y) = \exp(b_e + c_e y + d_e y^2)$$


$$\begin{array}{ccc}
\hline
p_{cp|X} & = & \frac{\kappa p_{cp}}{\kappa p_{cp} + (1 - p_{cp})}, & \kappa \sim \frac{P_{X|cp}}{P_{X|c\bar{p}}}
\end{array}$$


Derived from MC

MTM Likelihood

$$L(m_t) = \prod_{i=1}^{N} (f_b P_b(m_i, x_i) + (1 - f_b) P_s(m_i, x_i, m_t))$$

$$P_b(m, x) = \sum_{\text{bg types}} a_j B_j(m, x), \qquad \sum_{\text{bg types}} a_j = 1$$

$$P_s(m, x, m_t) = (p_{cp}S_{0,m_t}(m, x) + (1 - p_{cp})S_{1,m_t}(m, x))p_{cj} + (1 - p_{cj})S_{2,m_t}(m, x)$$

N is the number of observed events

 m_i is the top mass in the *i*th event. x_i symbolizes all other template variables.

 P_s and P_b are the signal and background densities

 f_b is the background fraction, treated as a nuisance parameter

 B_j are the templates for different background types. a_j are the background composition coefficients (assumed known).

 S_{0,m_t} , S_{1,m_t} , and S_{2,m_t} are the three signal templates for the given generated m_t p_{cj} , p_{cp} are the probabilities of correct jet and permutation assignments, respectively

Systematic Uncertainties

	0.000		31223	23 31	002	27815EHE	- 1	0
CDE	Run	H	Pro	limina	rx /	162	nh^{-1}	1
ODI	1 tun	11	110	шшша	I Y	102	DU	1

CDF Run II Preliminary

Source		Uncertainty (GeV/c ²)		
		$\geq 3.5 \text{ jets}$	$\geq 4 \text{ jets}$	
Statistical		+7.1 / -7.7	±6.6	
Systematic	Jet Energy Scale	6.3	6.6	
	Initial State Radiation	0.4	0.6	
	Final State Radiation	0.9	1.0	
	Parton Distribution Functions	0.2	0.2	
	Generators	0.4	0.4	
	Other MC Modeling	0.7	0.7	
	Background Shape	0.8	0.8	
	B-tagging	0.1	0.1	
	Total	6.5	6.8	

Source	Uncertainty (GeV/c ²)		
0.0940000000000000000000000000000000000	$\geq 3.5 \text{ jets}$	≥ 4 jets	
Relative to Central	3.0	3.2	
Central Calorimeter Response	4.6	4.7	
Corrections to Hadrons (Absolute Scale)	2.2	2.3	
Corrections to Partons (Out-of-Cone)	2.3	2.3	
Total	6.3	6.6	

I. Template Method

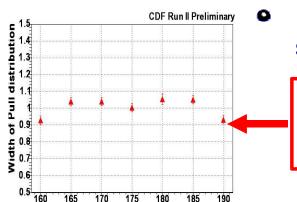
III. Dynamical Likelihood M.

Source	$\Delta \ \mathrm{M}_{top} \ \mathrm{GeV/c^2}$
Jet Energy Corrections	5.3
ISR	0.5
FSR	0.5
PDFs	2.0
Generator	0.6
Spin correlation	0.4
NLO effect	0.4
Transfer Function	2.0
Background fraction $(\pm 5\%)$	0.5
Background modeling	0.5
Monte Carlo modeling	0.6
Total	6.2

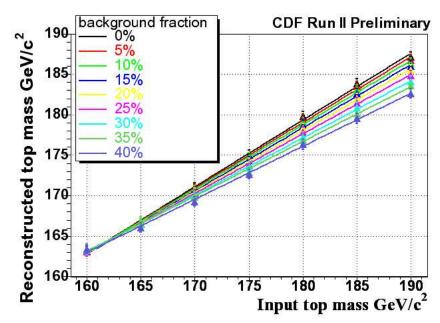
II. Multivariate
Template
Method

Systematic	$\Delta \rm \ M_{top} \ (GeV/c^2)$
Jet Energy	6.7
Generators	0.2
ISR	0.2
FSR	0.6
PDF	0.6
Background Shape	0.4
b Tagging	0.3
Fitting Procedure	0.7
Total	6.8

DLM Mapping Function


Mapping function: reconstructed top mass

→ generated top mass


Needed to handle

- Background effects
- Top mass dependence of transfer function

Background fraction is minimized by requiring exactly 4 jets

Input top mass GeV/c2

- Slope depends on background fraction
 - Expected background from cross section measurements used

Checks with pseudo experiments:

- Pulls ~ 0
- Pull widths are unit Gaussian