Simple and Complex Objects: Strategies for Event Reconstruction at the LHC

Lecture II: Confronting the Standard Model

Marjorie Shapiro UC Berkeley/LBNL August 11

Outline

- Object Reconstruction Part 2
 - Charge Leptons: e, μ and τ
 - Neutrinos (and LSP)
- Finding W's and Z's
 - $Z \rightarrow ee, ~\mu \mu$
 - Lepton P_{T} spectrum
 - Transverse mass and W reconstruction

Where We Finished Yesterday: Lepton ID

- Must extract lepton signal from much larger jet bckgnd
- Requires correlation of information among detectors
- Selected based on properties of each lepton species

Object 3: Electron Reconstruction

- Electrons signature:
 - Energy Deposition in EM Calorimeter
 - Track pointing at the energy deposition and with momentum consistent with calorimeter energy
 - Little or no energy in hadron calorimeter

Electron ID: Rejection of Background (I)

Choice of variables depends on detector. Some possibilities:

- Shower Shape Variables:
 - Longitudinal shape: ratio of energy in depth segments of calorimeter
 - Transverse shape: Hadron showers typically wider than electrons (also rejects $\pi^0 \pi^+$ overlap)
 - Had/EM: Expect very little energy deposit in HAD calorimeter

Shower Shape Distributions: Electrons Vs Jets

Electron ID: Rejection of Background (II)

- Track-Shower Matching:
 - E/P: Ratio of energy in calorimeter to momentum in tracker
 - Pointing: Compare extrapolated position of track to position of EM cluster

Caution:

- Significant material in LHC trackers means electron bremstahlung
- Correct modeling of material distribution necessary both for defining selection criteria and for estimating efficiency

Matching Tracks and Calorimeter: Electrons vs Jets

Matching in η

Electron ID: Rejection of Background (III)

- Large amount of material also means photon conversions are an issue (photons from π^0)
 - Explicit removal of conversions:
 - Require hits in pixel layer (most of material outside this)
 - Look for second track from conversion: cut on reconstructed mass and angle

Electron ID: Rejection of Background (IV)

- Isolation:
 - Study ratio of energy in annulus round electron to enegy of electron
 - As noted above: Does not work for all physics processes
- Transitions Radiation and dE/dx:
 - CDF drift chamber measures dE/dx: sensitive to particle velocity: helps for low momentum e
 - Atlas tracker has TR function: Can require high energy deposition hit, at cost of efficiency

Lepton Isolation

Calorimeter Isolation

Efficiency of Electron Selection

- Measure when possible using real data:
 - W from no-track trigger to measure tracking efficiency
 - Z with one tight electron and with loose selection
- Use simulation to extrapolate kinematics and correct for environmental issues (eg isolation)

Object 4: Muon Reconstruction

- Muon signature:
 - Track passes through material in muon filter and is reconstructed in muon spectrometer
 - Min ionizing energy deposits in EM ad HAD Calorimeter
 - Track match between inner tracker and muon spectrometer

Backgrounds to Muon ID

- Decays in Flight: π and K decays inside jets
 - Fall steeply with P_{T}
 - Non-isolated
- Punchthrough
 - Probability rises with P_{τ}
- Inner Detector track matched cavern background

Muon ID: Rejection of Background

- Matching of track parameters between Inner Detector and Muon system powerful at high P₁
- Multiple scattering at low P₊ limits resolution
- Verification of Min Ionizing energy in calorimeter

Object 5: Tau Reconstruction

- Unlike e and μ , τ decay to hadrons
- Look like narrow jets in calorimeter
- 1 or 3 charged tracks
- May have EM energy (π^0)

Tau Reconstruction

- Associate narrow jets in calorimeter with tracks
- Require
 - Low track multiplicity
 - Narrow calorimeter jet
 - Track and calorimeter isolation

Tau - Fraction of energy in $\Delta R < 0.1$

A Likelihood Approach to τ ID

- Construct variable that combines all cut variables
- Compare signal and bckgnd
- Can vary cut to get need rejection

Production of W and Z Bosons

- Lowest order diagram: quark annihilation
- W and Z obtain P_{τ} via initial state gluon emission

Lowest order production:

W and Z produced with 0 PT

Full QCD Calculation: Boson P₊ Remains Small

Distribution dominated by multiple soft gluon emission

Reconstruction of Z Bosons

- Limited to leptonic modes unless you trigger on b-jets
- Two high P_{T} leptons, nearly back-to-back in ϕ
- Reconstruction straightforward, background small

Reconstruction of W Bosons

- Again, restricted to leptonic decays
- But here one of the nearly back-to-back leptons is a neutrino
- How do we "detect" a particle that does not interact in our detector?
- Same technique as we always use for v: look for momentum imbalance and assign the missing momentum to the v
- But in hadron colliders, limited to using only the 2 transverse components of the momentum

Object 6: Neutrino Reconstruction

- Use same technique as for jets
 - Create a grid of calorimeter towers
 - Treat each tower as a massless particle with momentum direction normal to the tower

Comments on Total and Missing E_{T} Resolution

Calorimeter resolutions depend on energy deposition

 $\sigma_{E_T} \propto \sqrt{E_T}$

- Measurement is also sensitive to detector imperfections (cracks) and noise
 Image: Image:
- Degrades with pile-up

W Decay: Lepton P_T Distribution

(LO Calculation)

In CM frame, e and v are back-to-back and balance p_T

Changing variables from $\cos\theta$ to p_T means evaluating the Jacobean

$$\frac{d\cos\theta}{dp_T^2} = -\frac{2}{3}\left(1 - 4\frac{p_T^2}{\hat{s}}\right)^{\frac{1}{2}} = -\frac{2}{\hat{s}\cos\theta}$$

But we know

$$\frac{d\mathbf{\sigma}}{dp_T^2} \propto (1 + \cos\theta)^2$$

SO

$$\frac{d\mathbf{\sigma}}{dp_T^2} \propto \frac{1+\cos^2\theta}{\hat{s}\cos\theta} \propto \frac{2\left(1-2p_T^2/\hat{s}\right)}{\hat{s}\left(1-4p_T^2/\hat{s}\right)^{\frac{1}{2}}}$$

The Jacobean Peak

- Notice $\frac{d\sigma}{dp_T} \propto \frac{1 + \cos^2 \theta}{\cos \theta}$ Diverges for $\theta = \pi/2 \ (p_T = \frac{\sqrt{s}}{2})$
- Divergence results from Jacobean factor in transformation to P₁
- Integration of Breit-Wigner over s removes singularity

Transverse Mass

- W P_{τ} affect e and v by same boost
- Define e-v transverse mass:

 $m_T^2 = |p_T^{\ell}|^2 + |p_T^{\mathsf{v}}|^2 - (\vec{p}_T^{\ell} + \vec{p}_T^{\mathsf{v}})^2$ Note that for $P_T^{\mathsf{W}} = 0, m_I = 2|p_T^{\ell}| = 2|p_T^{\ell}|$ $\frac{d\sigma}{dm_T^2} - 4\frac{d\sigma}{dp_T^2}$

- m_{τ} sensitive to transverse boosts only at second order
- But $M^{}_{_{\rm T}}$ is more sensitive to detector resolution than $P^{}_{_{\rm T}}$ of the lepton

Transverse Mass Distributions for W

- Background low in both e and μ channels
- Low theoretical uncertainties: better choice of variable than lepton P₁ for measuring W mass

W Mass: Analysis Strategy

Use well measured Z to calibrate model of W

- Calibrate E or p scale using known resonances
- Measure lepton resolution using Z width
- Model recoil response using Z data
- Model P_{τ} distribution from Z (theory to extrapolate to W)
- Likelihood fit to W mass
- Apply radiative corrections
- Evaluate systematics

Conclusions

- EW production can be cleanly separated from QCD background if leptons in the final state
- Reconstructed of isolated e, $\mu,\,\tau$ and ν possible using a combination of variables from several detectors
- Non-isolated leptons more difficult

Next Time:

- Top: b-jet tagging
- Higgs: photons
- SUSY: Everything together