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The Top Quark

First discovered at Tevatron more than 10 years ago
— But still have only isolated hundreds of events
What do we know?
- Mass: 171.4 +- 2.1 GeV (CDF/D0O combined)
— o0 Tevatron: 7.3 £ 0.5(stat) = 0.5 (sys) * 0.4 (lumi) pb (CDF)
8.6 ™ _(stat) +1.1(sys) *0.6 (lumi) (DO)
- BR (t » Wh): >0.61 95% CL (CDF)
LHC will produce 1 ttbar pair per second

Opportunity for precision measurements

Excellent sample for testing complex reconstruction strategies



>m< 90% gg, 10% qq at LHC
) 15% gg, 85% qqg at Tevatron

* Strong Production: Tops are pair produced

— (EW production of single top also possible: W — tb)

* At Tevatron, production suppressed but to high top mass (small
parton luminosities)

* S:B much better at LHC



Top Decay

°* t > WbBR 100% in Standard Model

* Top lifetime = 5 x 10 sec:
— Decays before it hadronizes

* Top pair production gives:

e

6 jets

* Fully hadronic: 4/9
* Single lepton: 4/9
* Dilepton: 1/9

21 + 2jets




Top Reconstruction: The Basics

* Top pairs yield 6 high P_objects

* Separate search strategies for dilepton, single lepton
and all-hadronic modes

— Dileptons clean, but 2 v so full reconstruction of mass not

possible

— Single lepton: Good S:B. This is the golden channel

— All-hadronic: Must separate signal from QCD
background: possible with b-tagging (more later)



Top Analysis Strategy

Goal: Maximize top signal while reducing QCD bckgnd

Top decays products central and at high P_

- Typical Tevatron cuts: PT >15GeVandn<?2

Di- and single lepton channels have missing E_

All channels have large total energy in our objects:

- Define H__ 2 E_over the reconstructed objects

Two b-jets In final state: identification of jets from b-
guarks greatly reduces background




Object 7: Jets Produced from b-quarks

Displaced

* Characteristics of B decays: tracks

— B lifetime long: ct ~ 460 u

[ ]

- Semileptonic BR 10% per lepton species i

* Two methods of b-tagging “uu

Primnr-f )
Vertex

— Displaced vertex (or track from it)
— “Soft” leptons close inside jets

* Vertex tagging has higher efficiency and better purity

— But can combine both techniques



B-Tagging From Secondary Vertices

* Study track impact parameter

* Two options:

— Secondary Vertex Finding:

2 or more tracks consistent -—-r o B Vartex

with a single vertex o

— Jet Probability:
Combined likelihood that all |Primary Vertex |
tracks come from primary
vertex

Detalls of algorithm discussed in Aaron Dominguez's talk Monday



b-Tagging Performance Depends on Background

* Charm also long-lived: less rejection

* Performance E_dependent
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Reconstructing Top in Single Lepton Channel

* Sample contains lepton, missing energy and 4 jets

— 2 jets reconstruct to W mass
— 2 jets are b jets
— W+Db-jet reconstructs to Top

* Many possible combinations: Can apply above constraints
to pick right matching or use all combinations with
appropriate probabilities

* Signal can be observed without b-tagging if strong H_cut
applied

— b-tagging reduces combinatorial background




Number of Events
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Events/5 GeV/c?

Using b-tags to Select Correct Combination In
Top Events

CDF study

D-tag 1-tag(T) 2-tag
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Signal only: All combinations of jets to form 2 Top Decays

* b-tagging increases probability of selecting correct
combination: improved resolution




Top at the LHC
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Higgs Production at LHC
(reminder from Sally Dawson's talk)
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* Higgs decay modes
depend on Higgs' mass

* Couples to heaviest
accessible particles

* Some modes easier to
observe that others

* Greatest experimental
difficulties in the low
mass region
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Low Mass Higgs: h—vyy

Direct Production has largest rate
But cannot see dominant h— bb decay above bckgnd

Photon decay mode rare, but very good mass
resolution possible (ECAL design critical)

g 76666660
--H
g 09999990,

Will require every trick in the book




* Use same variables as for electron selection, with tighter cuts

— Unconverted photons have track veto

— Converted photons independently analyzed by looking for the
second track

— Emphasis on shower shape variables
* Photons shower later than electrons

* 1 decay to 2y so probability of early shower twice as large

* |solation is critical

ATLAS and CMS have different emphasis due to different detector
designs, but overall performance for Higgs similar



Atlas: Efficiency: Low and High Luminosity
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* Even best particle ID cuts can't remove real photons
* Background from QCD production of di-photons large

— Must subtract large background statistically

;
|

_Events a’H 2 GeV
8
:

ATLAS: 100 fb™

g

Signal-backgroond, events / 2 GeV




Other Higgs Modes: See Sally's Talk for More

M, for tt-higgs Events
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Issues:

* bb peak close to threshold
| T * uncertainty in rate

R * large background

* difficult, busy events
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* Partner for every know particle

— fermions have spin 0 partners

— bosons have spin %2 partners
* Theoretically favored extension to SM

— Solves hierarchy problem (sparticle and particle loops
cancel)

— Provides Dark Matter candidate
— Required by String Theory
* Requires 5 Higgs bosons (h, H, A, H+-)



If SUSY the source of EWSB, then expect
sparticles at the TeV Scale

Since each know particle has a partner, large number
of sparticles to be discovered

Spectrum of masses very model dependent

In general, strongly interacting particles the heaviest:
they decay to gauginos

Lightest SUSY particle (LSP) stable (or quasi-stable)

Signals with apparent missing momentum




How Fast Can SUSY be Found?

Plot shows reach in SUSY
space
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We must be ready for Physics on Day 1!




How SUSY Might First Be Observed

Select events >= 4 jets and
missing Et

10°F
Meff: Sum of 4 jet and missing
Et's
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Peak correlates well with SUSY )| =
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mass scale LHHT

Example has Susy masses mi— LLL
~700 GeV _
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Signal characteristic of any
model with new particles
(strongly coupled) at large mass



* Different SUSY models will have different phenomenology

— Must explore different regions in SUSY parameter
space

* Basic Principle: Work down decay chains
- Measure masses and mass differences

— Test universality among generations



Using Kinematics to Constrain SUSY models

* As an example, take the squark decay to g e* e’
— Dilepton mass has endpoint at x2-x1 mass difference
* SUSY is pair produced: For event selection require:
— 2 iIsolated leptons (opposite charge, same species)
— 2 high Pt jets

* Plot dilepton invariant mass

- - ATLAS
Clear kinematic bound m H,_'JI w

observed in mass spectrum § | J ‘

Many other examples explored Y erbatiay



Many Other Things are Possible Besides SUSY

* We don't know what causes EWSB
* No reason to believe SUSY is right

* Many other possibilities for new phenomena

- New W or Z
- WW, ZZ resonances (a la technicolor)

— Extra Dimensions

But whatever we find, it will decay into the particles of the SM
and its backgrounds will be the SM



A Mini-Black Hole as Simulated in the ATLAS Experiment

ATLAS Atlantis

Are you ready to find this?




Conclusions

Clean samples of the fundamental objects (jets,
charged leptons, neutrinos, photon, b-jets) can be
reconstructed as LHC

Selection criteria must be optimized for relevant physics

Simple objects can be combined to find more complex
ones: W, Z, Top, Higgs, SUSY, Black Holes ...

There's an exciting new world about to open up

You will all be part of it !




