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Abstract

We present a new selection of W events to be used in the WH — [vbb anal-
ysis. The new events are selected by requiring an isolated track with significant
deposits of energy in the calorimeter that are primary from the decay of W — ev
or 7v where the electron failed the standard electron selection or the 7 decays
into a single charged hadron (one-prong). We search for WH — Ilvbb candi-
date events with two jets, large Hr, and exactly one looser isolated track lepton
candidate from the missing energy trigger. We present the analysis technique
used for these new events, as well as the resulting gain in the acceptance of WH
events. This new analysis selection is applied to the data through period 28,
corresponding to an integrated luminosity of 5.7 fb~!.

1 Introduction

This note describes an improvement to the existing search for pp — WH — (vbb
in events that have at least one SECVTX b-tagged jet. The improvement consists of
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including an additional looser isolated track category to the standard W selection by
requiring an isolated track with significant deposits of energy in the calorimeter. In
the existing analysis, the lepton was required to be identified as either an electron
(CEM, PHX), a muon(CMUP, CMX), or an isolated track with an energy deposit
in the calorimeters consistent with that of a minimum-ionizing particle. These new
events are selected from the missing energy trigger and are primary from the decay
of W — ev or 7v where the electron failed the standard electron selection or the 7
decays into a single charged hadron (one-prong). Treating this new lepton type as an
independent channel, we go through the full analysis procedure,including b-tagging,
forming an event discriminant, and setting limits on the W H production cross section.
These limits will be used in combination with the full W H — [vbb analysis, as well as
with other channels.

2 Data Samples and Event Selection
The data used for this analysis come from the Fr dataset (emet), which were collected

through Feb. 2010. We select events with no tight leptons reconstructed, but containing
a high-pr isolated track that are required to pass one of the following MET triggers:

MET35_&_TWO_JETS

MET35_&_CJET_&_JET

MET35_&_CJET_&_JET_LUMI_190

MET35_&_CJET_&_JET_DPS

e MET45(MET40)

We use a Hy + jets (MET2J) and Hyp trigger (MET45) parallel and will describe details
in the event selection section.

Our Higgs signal model comes from the official Higgs Discovery Group Higgs Monte
Carlo (MC) samples generated with PYTHIA using the standard MC procedure out-
lined in CDF software version 6.1.4. These Higgs samples were generated for a range
of Higgs masses from 100 GeV to 150 GeV. Our background models are composed of
a number of components. The W and Z plus light-flavor and heavy-flavor jet pro-
cesses are modeled using ALPGEN version 2.10 showered with PyYTHIA. Likewise, the
single-top contribution is modeled using parton-level events generated by MadEvent
and showered through PYTHIA. The rest of the background processes, including the ¢,
WW ,WZ, and ZZ processes were generated with PYTHIA. For backgrounds involving
a top quark, the top mass was set to 172.5 GeV/c%.
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2.1 Luminosity

We use the standard luminosity calculation provided by the top group including cor-
rections for trigger prescales on a run-section by run-section basis. This calculation
uses version 34 of the DQM silicon good run list (bits [1,1,4,1]) for data through period
28. The luminosity for the MET2J triggered events is 5.22 fb~!. The luminosity for
the MET45 triggered events is 5.55 fh™.

2.2 Event Selection

We improve the isolated track selections of the existing WH — lvbb analysis [1] to
select additional W — ev or W — 7v events from theHr triggers where the electron
failed the standard electron identification or the 7 decays into a single charged hadron
(one-prong). We use the same selection criteria outline in Table 1 to select high quality,
high-pr isolated tracks (ISOTKh) with |nqec| < 1.2 and a significant energy deposit
in the calorimeter as a tight jet. We define the proximity of our tracks to other activity
in the event using track isolation. Track isolation uses only track information and no
calorimeter information. It is defined as:

pr(candidate) (1)
pr(candidate) + 3 pr(trk)’

where Y pp(trk) is the sum of the pr of tracks that meet the following requirements:

pr > 0.5 GeV

Trklsol =

o AR(trk, candidate) < 0.4
o AZ(trk, candidate) < 5 cm
Number of COT axial hits > 20

Number of COT stereo hits > 16

Using this definition, a track with no surrounding activity has a isolation of 1.0.
This analysis requires track isolation > 0.9, or 90% of the local track pr. However,
the purity of these events is still quite low as shown in the Figure 1 when comparing
the corresponding isolation in the hadronic calorimeter (Hadiso) and the minimum A¢
between theHr and jets in the data and the WH115 Monte Carlo. We use a variety of
vetoes that ensure that isolated tracks events are from W events and that they do not
overlap other lepton identifications.

e Two Track Veto: We count the number of isolated tracks in the event. If there
are two or more isolated tracks, we veto the event.

e Extra Z removal: We remove the events if any of two opposit-signed high pr
tracks has an invariant mass within the Z mass window between 76 and 106

GeV/c2



4 2 DATA SAMPLES AND EVENT SELECTION

x10 : .
300F =
E emet E
250F- 3
2005 ......... Whlls _z
150::E =
100F =
s} =
oF . . E

0 0.4 0.6 0.8 1
Had Iso

1400)
1200)
1000)
800 ..
600F- i

400f
200F

3 4
mini dphi (j2)

Figure 1: Comparison of the hadronic isolation and the minimum A¢ betweenFr and
jets for isolated track candidates from theHr trigger data and the WH115 MC.

e Standard Lepton and Isolated Track Veto: If the event contains any iden-
tified lepton or an isolated muon-like track (ISOTKm) that used in the standard
WH analysis, the event is not allowed to pass the ISOTKh selection.

e Hadronic Isolation<0.1: The track is required to be isolated in the hadronic
calorimeter (Hadiso) to be consistent with an electron or one-prong hadronic 7
decay where the Hadiso is defined as the ratio of sum of energy deposits in the
surrounding towers in the hadronic calorimeter over the track pr.

e Hr not pointing to any jet: TheFr is required to not point to any jet AR > 0.4.

The Hr is corrected for the presence of muons (including muon-like isolated tracks)
and jet energy corrections (JES). The jets are identified using the JETCLU algorithm
with a cone of 0.4 and are required to be central (|npe.| < 2.0) with Er > 20 GeV,
corrected for level-5 jet corrections. A cut of m}¥ > 10 GeV is required for the O-tag
and single-tagged events to suppress the non-W background contribution.

Jets Trigger Requirements The MET2J trigger has been used extensively at CDF
and has shown that that the trigger’s jet requirements are fully efficient after the
following cuts:

e Two Tight Jets with £ > 25 GeV
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Variable Cut
pr > 20 GeV
| 20| < 60 cm
|do|corr < 0.2
|do|corr (w/SI) < 0.02
track isolation > 0.9
Axial COT hits > 24
Stereo Hits > 20
x? probability (data only) > 1078
Num Si Hits (data only, only if num expect > 3) >3
Matching to a jet AR < 0.4

Table 1: Looser Isolated track selection cuts

e AR>1.0
e One central jet with |n| < 0.9

We apply these additional jet cuts after identifying the tight jets in the event. For
jet bins > 3, we require that the two lead jets in the event satisfy these requirements. If
any one of the MET2J trigger-related requirements above failed, we consider that event
as part of an orthogonal sample which requires the MET45 trigger. As a result, we
have two exclusive IsoTrk categories, which are referred to as the MET2J and MET45
trigger samples.

We use the parameterization of the MET2J and MET45 trigger turn-on curves
for each trigger level separately as a function of level-5 jet corrected vertex Hp that
measured using the inclusive CMUP trigger [2]. We choose level-5 jet corrected vertex

Hr, which is corrected for the primary vertex position and takes into account the level-5
jet energy correction but not corrections derived from muons.

2.3 b-Tagging

We adopt the b-tagging strategy that used in the standard WH analysis [1], which
maximizes the number of events with two or more b-tags by making use of the SECVTX,
jet probability (5%), and RomaNN algorithms. Every event with at least one SECVTX
b-tagged jet falls into one of four exclusive tag categories, defined below:

SECVTX tight + SECvTX tight (ST4+ST): Events in this category are required to
have both jets tagged by the tight operating point of SECVTX.

SECVTX tight + Jet Probability 5% (ST+JP): Events in this category are re-
quired to have one jet tagged by the tight operating point of SECVTX and one
jet to be tagged by the jet probability algorithm. To be tagged, a jet must have
a jet probability of less than 5%.
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SECVTX tight + RomaNN (ST+RomalNN): Events in this category are required
to have one jet tagged by the tight operating point of SECVTX and one jet to
be tagged by the RomaNN algorithm. To be tagged, a jet must have an output
value greater than 0.0.

SECVTX tight: Events in this category are required to have exact one SECVTX tight
tagged jet and with no additional SECVTX, jet probability or RomaNN tags.

In order to further improve the b-tagging purity for the events containing only one
SECVTX b-tagged jet, we also include the Karlsruhe Neural Network b-tagger (Kitnn)
as a b-jet discriminant from light flavor or charm quarks which uses jet characteristics
as well as secondary vertex information [3].

2.4 Neural Network b-jet Energy Correction

The most sensitive variable for W H analysis is the dijet invariant mass. Improvement
on dijet mass resolution directly results in improvement of the final sensitivity. To
further improve the dijet mass resolution, a neural network based b-jet energy correction
method was developed [4]. We employ four neural network functions for each b-tagging
type: SECVTX, JP, RomaNN, and not-tagged.

2.5 Neural Network Discriminant

To further improve signal-to-background discrimination after event selection, we em-
ploy a Bayesian neural network (BNN) [5] trained on a variety of kinematic variables
to distinguish W H from backgrounds. One advantage using BNN is less prone over-
training because of the bayesian sampling.

For this analysis, we use the same BNN discriminant functions that are opti-
mized for the central lepton and one of three tagging categories: ST+ST, ST+JP
and ST+RomaNN, and 1-ST [1].

3 Background Estimate

We use the same methodology of background estimation in the lepton-triggered anal-
ysis, which is commonly referred to as “Method 117 [6].

The W+ jets contribution includes jets from b and ¢ quarks, and light-flavor jets
mistagged by the b-tagging algorithm. The effect of true W + heavy-flavor production
is estimated from a combination of data and simulation. We use both low and high
luminosity ALPGEN Monte Carlo samples to calculate the rate of Wbb, Wce, and We
production relative to inclusive W + jets production. Then this relative rate is applied
to the observed W + jets sample, after non-W and ¢t contributions have been sub-
tracted. Finally, we apply b-tagging efficiencies and b-tagging scale factors to estimate
the background after tagging.
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Theoretical Cross Sections

Ww 11.66 + 0.70 pb
Wz 3.46 £ 0.30 pb
27 1.51 & 0.20 pb

Single Top s-channel 1.05 £ 0.07 pb
Single Top t-channel 2.10 £ 0.19 pb
Z + jets 787.4 £+ 85.0 pb

tt 7.04 + 0.6 pb

Table 2: Theoretical cross sections and errors for the electroweak and single top back-
grounds, along with the theoretical cross section for tt.

Contributions from events with falsely tagged light-flavor jets (mistags) are esti-
mated using the latest version of the mistag matrices [7] for SecVtx, JP, and RomaNN
b-tagging algorithms.

The normalization of the diboson, tt and single top backgrounds are based on
the theoretical cross sections (listed in Table 2). The event acceptance and b-tagging
efficiency are derived from MC. The acceptance is corrected in MC events for lepton
identification, trigger efficiencies and z vertex cut, and b-tagging scale factors.

The signature of W decay can also be mimicked by non-W multijet events which
may contain a high-energy reconstructed lepton and missing transverse energy. These
can arise from semileptonic heavy-flavor decay or from false reconstructions. The
reconstructed leptons from such events are rarely isolated from the rest of the event,
as required by our event selection. We therefore calculate the number of non-W events
in our selected sample by extrapolating from non-isolated Hadiso sideband region into
the signal region.

3.1 Non-W (QCD fake) background

We estimate the non-W fraction in the pretag and tagged samples by fitting the data
Hadiso distribution to background templates. The non-W distribution is obtained from
the non-isolated (iso > 0.1) loose muon (CMU, CMP, BMU) events. The MC signal
template contains events from Z+jet, W+LF, top, and electroweak backgrounds. In
order to check the Hadiso modeling, we select the events containing one tight central
lepton and one isolated track. The opposite-sign pair with back-to-back provides a
clean sample of DY that can compare directly to the Monte Carlo shape. The same-
sign pair provides an alternative sample of fakes from the W +jets. The comparison is
shown in Figure 2 that the Hadiso modeling seems reasonable.

We use the same uncertainty estimates as described in “Method II For You” [6],
which was determined by performing fits with an alternative shape, a variety of binnings
and fit ranges. The relative uncertainty on the non-W normalization is 40%. Figures
3 and 4 show the results fitting the Hadiso distribution in the pretag and tag regions.
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Figure 2: The comparison of hadiso for the signal and the background.

The fits in the double tagged region suffers from low statistics. The uncertainty of 40%
accomodates the low statistics.
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Figure 4: QCD fraction estimate for each b-tagging category (STST, STJP, STRoma,
SST) in the W + 2 jets events.

3.2 Background Summary

We have described the contributions of individual background sources to the final
background estimate. The summary of the background estimates is shown in Tables 3
- 6 and the number of expected events with observed data as function of jet multiplicity
plots are shown in Figures 5 - 8. In general, the number of expected events and the
number of observed events are in good agreement.
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Sources ljet 2jet 3jet 4jet >bjet
Pretag Events 32488 6544 1145 235 44

W + LF 69.1£12.8 | 76.7£13.8 | 16.243.27 | 2.07£0.64 | 0.23+0.16
W + bb 34.9£10.8 | 68.3+£21.1 | 19.14£5.98 | 3.15£1.07 | 0.41+0.19
W + cc 19.746.26 | 43+13.6 12.944.11 | 2.4840.86 | 0.39+0.18
W + ¢j 33.9+10.7 | 42.2+13.4 | 7.66+2.44 | 1.134+0.39 | 0.144+0.07
t#bart (7.4 pb) 3.4440.55 | 25.8+3.81 | 38.845.56 | 27.243.77 | 7.64+1.05
Single Top S 1.07£0.17 | 4.9440.71 | 1.33£0.19 | 0.2440.03 | 0.05+0.01
Single Top T 2.0240.35 | 9.6+£1.67 | 2.33+0.38 | 0.35+0.06 | 0.04+0.01
WW 2.4840.43 | 8.88+1.51 | 2.3840.41 | 0.4940.09 | 0.094+0.02
WZ 0.740.11 | 2.26+0.33 | 0.56+0.08 | 0.1£0.02 | 0.024+0
77 0.02+0 0.0640.01 | 0.0240 0+0 0+£0

Z + jets 1.2940.25 | 2.2240.42 | 0.78+0.14 | 0.1740.03 | 0.04=£0.01
Non-W 27.848.33 | 26.6£7.97 | 9.07+2.72 | 2.22+1.78 | 0.32+0.5
Total background | 1964+31.7 | 311+51.1 | 111+£14.7 | 39.64+4.89 | 9.37+1.25
WH115 0.1640.02 | 0.6540.08 | 0.1640.02 | 0.03+0 0+£0

Data 148 268 95 28 4

Table 3: Background summary table for 1-ST tag category.
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Figure 5: Number of expected and observed events for 1-ST tag category.
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Sources ljet 2jet 3jet 4jet >bjet
Pretag Events 32488 6544 1145 235 44
W + LF 0.134+0.05 | 0.46+0.17 | 0.2240.09 | 0.05+0.02 | 0.0140
W + bb 3.47+1.23 | 10.9+£3.84 | 4.064+1.41 | 0.72+0.27 | 0.1340.07
W + cc 0.154+0.05 | 0.764+0.25 | 0.4740.16 | 0.12+0.04 | 0.04+0.02
W + ¢j 0.264+0.09 | 0.7440.25 | 0.2840.09 | 0.05+0.02 | 0.01+£0.01
t#bart (7.4 pb) 0.324+0.07 | 7.854+1.8 | 15.7+3.54 | 16.2+3.61 | 4.88+1.08
Single Top S 0.15+0.03 | 2.140.49 | 0.6+£0.14 | 0.16+0.04 | 0.0440.01
Single Top T 0.0940.02 | 0.66+0.16 | 0.6+0.14 | 0.14+0.03 | 0.0340.01
Ww 0+0 0.06+0.01 | 0.0640.01 | 0.034+0.01 | 0£0
WZ 0.11£0.02 | 0.5440.12 | 0.1340.03 | 0.01+0 0.01+0
77 0+0 0.01+0 0+0 0+0 0+0
Z + jets 0.014+0 0.084+0.02 | 0.054+0.01 | 0.01+0 0+0
Non-W 1.64+0.49 | 1.13+0.34 | 0.23+£0.5 | 0.114+0.5 | 0.03+0.5
Total background | 6.334+1.47 | 25.445.04 | 22.4+4.22 | 17.64+3.74 | 5.184+1.21
WH115 0.0240.01 | 0.2740.06 | 0.0840.02 | 0.01+0 0+0
Data 4 21 19 18 )

Table 4: Background summary table for ST4+ST tag category.
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Figure 6: Number of expected and observed events for ST+ST tag category.
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Sources ljet 2jet 3jet 4jet >bjet
Pretag Events 32488 6544 1145 235 44

W + LF 0.16£0.05 | 1.12+£0.43 | 0.454+0.2 | 0.1£0.08 | 0.02+0.01
W + bb 2.2240.72 | 9.77£3.06 | 3.264+1.04 | 0.72+0.25 | 0.14+0.07
W + cc 0.31+0.1 | 2.02+0.66 | 1.154+0.38 | 0.314+0.11 | 0.06+0.03
W + ¢j 0.5340.17 | 1.9840.65 | 0.684+0.23 | 0.14+0.05 | 0.02+0.01
t#bart (7.4 pb) 0.2440.05 | 5.96+0.93 | 13+2.14 13.64+2.29 | 4.474+0.81
Single Top S 0.08£0.02 | 1.51£0.24 | 0.4840.08 | 0.12+0.02 | 0.02+0
Single Top T 0.074+0.01 | 0.55+£0.1 | 0.4340.07 | 0.11£0.02 | 0.0240
WW 0.02+0 0.240.04 | 0.13+0.02 | 0.06+0.01 | 0.0340.01
WZ 0.0840.02 | 0.3840.05 | 0.094+0.01 | 0.03£0.01 | 040

77 0+0 0.01+0 0+0 0+0 0+£0

Z + jets 0.0240 0.0940.02 | 0.064+0.01 | 0.024+0.01 | 0.01+0
Non-W 1.68+0.51 | 1.7£0.51 | 1.56+£0.47 | 0.764+0.61 | 0.25+0.5
Total background | 5.4+1.12 | 25.3+4.6 | 21.3+2.87 | 16+2.45 5.05£0.97
WH115 0.01+0 0.2140.03 | 0.0640.01 | 0.01+0 0+0

Data 6 19 15 12 4

Table 5: Background summary table for ST4JP tag category.

Number of Events

STJP ISOTKh

CDF Run Il Preliminary (5.7 fo ™

40

30

20

10

-e-Data

I Non-w

Wz +jets

M Di-boson
Single Top
tt (7.4 pb)

Ww +HF

Figure 7: Number of expected and observed events for ST+JP tag category.
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Sources ljet 2jet 3jet 4jet >bjet
Pretag Events 32488 6544 1145 235 44
W + LF 0.67+0.23 | 3.1+0.91 | 1.3940.46 | 0.26+0.1 | 0.0440.03
W + bb 1.1440.35 | 7.044+2.14 | 2.99+0.92 | 0.7440.25 | 0.13+0.06
W + cc 0.2240.07 | 1.974+0.62 | 1.25+0.4 | 0.35+0.12 | 0.08+0.04
W + ¢j 0.384+0.12 | 1.934+0.61 | 0.7440.24 | 0.16+0.06 | 0.03£0.01
t#bart (7.4 pb) 0.134£0.02 | 3.854+0.5 | 9.73+1.32 | 10.1+1.4 | 3.54+0.52
Single Top S 0.054+0.01 | 0.9240.12 | 0.354+0.05 | 0.09+0.01 | 0.02+0
Single Top T 0.054+0.01 | 0.4940.07 | 0.384+0.06 | 0.0840.01 | 0.02+0
WW 0.0240 0.2440.04 | 0.1440.02 | 0.0540.01 | 0.01+0
W7 0.0240 0.26+0.03 | 0.0940.01 | 0.02+0 0+0
77 0+0 0.01+0 0+0 0+0 0+0
Z + jets 0.0240.01 | 0.1240.03 | 0.074+0.02 | 0.03+0.01 | 0.01+0
Non-W 1.1940.36 | 0.76+0.23 | 0.75+0.23 | 0.4+0.5 0.0940.5
Total background | 3.89+0.69 | 20.743.56 | 17.942.17 | 12.3+1.58 | 3.96+0.73
WH115 0.01+0 0.1240.01 | 0.0440 0.01+0 0+0
Data 3 15 16 17 4

Table 6: Background summary table for ST+RomaNN tag category.
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Figure 8: Number of expected and observed events for ST+RomaNN tag category.
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M(H) | o(pp — W*H) | Br(H — bb)
100 0298 pb 0812
105 0.253 pb 0.796
110 0.216 pb 0.770
115 0.186 ph 0.732
120 0.160 pb 0.679
125 0.138 pb 0.610
130 0.119 pb 0.527
135 0.104 pb 0.436
140 0.090 pb 0.344
145 0.079 pb 0.256
150 0.069 pb 0.176

Table 7: Theoretical cross section and branching ratio to bb for a variety of Higgs
masses.

b-tagging category IsoTrk Reco Trigger ISR/FSR/PDF JES b-tagging Total
One tag 8.85% 2% 8.4% 4.7% 4.3% 13.9%

ST + ST 8.85% 2% 7.1% 1.7% 8.6% 14.5%

ST + JP 8.85% 2% 6.4% 2.4% 8.1% 14.0%

ST + RomaNN 8.85% 2% 19.5% 1.9% 13.6% 25.5%

Table 8: Systematic uncertainties for IsoTrks.

4 Signal Acceptance

Samples of PyTHIA WH — lvbb Monte Carlo with Higgs boson masses between 100
GeV and 150 GeV are used to estimate 6%%—%1&)5' The MC samples were generated
with beam conditions which approximate real data periods, for run periods 0-18.
Table 7 shows the NNLO W H production cross section and the branching ratio of
H — bb. The cross sections and the branching ratios in table 7 are multiplied with the
integrated luminosity, 5.6 fb~', and the overall event detection efficiencies to produce

the number of expected W H events as shown in Table 3 - 6.

4.1 Other Systematic Uncertainties on Acceptance

The systematic uncertainties on the acceptance include uncertainties from the jet en-
ergy scale, initial and final state radiation contribution, and the b-tagging scale factor,
which are very similar to the uncertainty estimates as described in the standard isolated
track analysis [1]. Total systematic uncertainties are listed in Table 8.
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5 Kinematic Distributions

The kinematic distribution for all discriminant input variables and NN output dis-
tributions have been thoroughly examined to establish proper modeling using pretag
sample, see Figures 9 - 13. The data and MC background estimates are in good
agreement. The same NN inputs and output distributions after b-tagging can be found
in Appendix:

e Figure 19 - 23 for STST tags;
e Figure 24 - 28 for STJP tags;
e Figure 29 - 33 for STRoma tags;

e Figure 34 - 38 for SST tags.
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Since the entire histogroms of the BNN output in the selected signal region are used
to extract the final result, the shape uncertainties affect the final sensitivity of this
analysis.

We estimate Jet Energy Scale (JES) shape uncertainty by shifting the JES with 4+ 1
sigma from the nominal value. Figure 14-16 shows the comparison between nominal
and =+ 1 sigma shifted BNN templates for the signal and some main backgrounds, such
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Figure 10: Pretag kinematic distributions for first jet Er, n and second jet Er, 1.

as W + bb and tt, respectively. To extract the limit, we do include the JES shape
uncertainty for the signal and all the backgrounds ( W+jets (W +bb, W + c¢, Mistag),
tt, single top (s-channel, t-channel), dibosons (WW, WZ, ZZ), and Z+jets ).
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Figure 14: BNN output shape for default and 41 sigma JES for W H signal (my =
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Figure 15: BNN output shape for default and +1 sigma JES for Wbb (my =
115 GeV/c?). From left to right, tight double(ST+ST), loose double(ST+JP and

ST+RomaNN), and single tag(SST), respectively.
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7 Results

Since there is no significant excess of events in the data compared to the background
expectation, we fit the NN output distributions shown in Figure 17 and extract 95%
C.L. upper limits for the four tag categories (1-ST, ST+ST, ST+JP and ST+RomaNN)
using pseudo-experiments based on the background expectations.
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Figure 17: BNN data output in four b-tagging categories (STST, STJP, STRoma,
SST) along with background expectations for the Higgs mass hypothesis at my = 120
GeV/c2.

The following systematic uncertainties, up to the pretag acceptance, are treated as
100% correlated:

1. luminosity uncertainty
2. uncertainty on the SECVTX b-tag scale factor

3. Jet probability scale factor
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CDF Run II Preliminary 5.7 fb*

Limits for Combined Lepton and Tag Categories
M(H) | Observed Limit Expected Limit

100 5.4 10.7

105 6.4 12.0

110 7.5 13.8

115 9.9 14.9

120 13.8 18.5

125 18.1 21.2

130 25.4 28.5

135 34.2 37.6

140 57.4 54.0

145 76.5 74.1

150 135.0 131.2

Table 9: Expected and observed limits as a function of Higgs mass for combining the
combined all b-tag categories.

4. RomaNN scale factor.

Table 9 details the expected and observed limits at the various Higgs mass points
for the combined search across lepton types and tag categories. Figure 18 shows the
observed limits and the expected limits with 1o and 20 pseudo experiment bands.

8 Conclusions

We present a new selection of W events to be used in the W H — [vbb analysis. The new
events are selected by requiring an isolated track with significant deposits of energy in
the calorimeter that are primary from the decay of W — ev or 7v where the electron
failed the standard electron selection or the 7 decays into a single charged hadron
(one-prong). We find that for the dataset corresponding to integrated luminosity of
5.7 fb~!, the data agree with the SM background predictions within the systematic
uncertainties. We therefore set upper limits on the Higgs production cross section
times the bb branching ratio. We find o(pp — W*H) x Br(H — bb) with an observed
limit 9.9 x SM (14.9 x SM expected) for m; = 115 GeV/c? at 95% confidence level.
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Figure 19: STST kinematic distributions for isolated track pr, n,Hr, and W transverse

1mass.
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Figure 21: STST kinematic distributions for dijet mass before and after bjet energy

correction, Hr, and Pr imbalance.
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Figure 23: STST kinematic distributions for kitnn and Bnn output corresponds to

my =110, 115, 120 GeV /c? respectively.
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Figure 24: STJP kinematic distributions for isolated track pr, n,H7, and W transverse
mass.
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Figure 25: STJP kinematic distributions for first jet Er, n and second jet Er, 7.
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Figure 27: STJP kinematic distributions for maximum of 1vj mass, n x @), sum loose
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Figure 28: STJP kinematic distributions for kitnn and Bnn output corresponds to
my =110, 115, 120 GeV /c? respectively.
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A.3 Kinematic Distributions after STRoma
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Figure 29: STRoma kinematic distributions for isolated track pr, n,Hr, and W trans-
verse mass.



38 A  KINEMATIC DISTRIBUTION AFTER TAGGING

CDF Run Il Preliminary (5.7 fb %)

ISOTKh
STRoma

[ Single Top
1T (7.04pb)

MWW+ HF

® Hw+LF
== wh115x10

10

10

180 200 200
hitiEt hjtEt

CDF Run Il Preliminary (5.7 fb ")

1SOTKN
STRoma @ Data

i-boson
0 Single Top
1T (7.04pb)

U

== wh115x10

- - E X X 15
hjt1Eta hit1Eta

CDF Run Il Preliminary (5.7 fb ™)

ISOTKh
STRoma

== wh115x10

10

10

200
hjtzEt

CDF Run Il Preliminary (5.7 fb*)

1SOTKh
STRoma
5
i-boson
ingle Top
4 T (7.04pb)
HF

== wh115x10

R ‘ ‘ ‘ e o W LR

2
hjt2€ta hjt2Eta

Figure 30: STRoma kinematic distributions for first jet Er, n and second jet Er, 7.
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Figure 31: STRoma kinematic distributions for dijet mass before

correction, Hr, and Pr imbalance.
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Figure 32: STRoma kinematic distributions for maximum of 1vj mass, 1 x @), sum loose
jet Ep, and Pr of W candidate.
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Figure 33: STRoma kinematic distributions for kitnn and Bnn output corresponds to
my =110, 115, 120 GeV/c? respectively.
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Figure 34: SST kinematic distributions for isolated track pr, n,Hr, and W transverse
mass.
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Figure 35: SST kinematic distributions for first jet E7, n and second jet Er, n.
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Figure 36: SST kinematic distributions for dijet mass before and after bjet energy
correction, Hr, and Pr imbalance.
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Figure 37: SST kinematic distributions for maximum of lvj mass, n x ), sum loose jet

Er, and Pr of W candidate.
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Figure 38: SST kinematic distributions for kitnn and Bnn output corresponds to
my =110, 115, 120 GeV /c? respectively.



