Using Images to
Reconstruct Sound Recordings: Progress and Prospects
Update on Collaboration with the Library of Congress
Carl Haber
Lawrence Berkeley National Lab

May, 16, 2005
Topics in Preservation Science Lecture Series

Lawrence Berkeley National Lab
www.lbl.gov

- Founded in 1931 by E.O. Lawrence
- Oldest of US National Labs
- Operated by the University of California for the US DoE
- 4000 Staff, 800 Students, 2000 Guests
- 14 Research Divisions including
 - Physics, Nuclear Science
 - Materials, Chemical Science
 - Life Sciences, Physical Bioscience
 - Energy and Environment, Earth
 - Computing
- Major user facilities-
 - Advanced Light Source
 - Nat. Center for Electron Microscopy
 - Nat. Energy Research Super Computer Center
Outline

• Introduction
• Summary of method (mostly a repeat)*,**
• The I.R.E.N.E. Project – a fast disc scanner, now funded by NEH
• Research on 3D methods for cylinders & discs
• Public outreach and prospects
• Conclusions

Collaboration and Support

Vitaliy Fadeyev, Carl Haber, Jian Jin, Stephen Wu
Lawrence Berkeley National Lab
Christian Maul, John W. McBride
Taicaan Technology, U.K., University of Southampton, U.K
Mitch Golden
Peter Alyea, Larry Applebaum, Elmer Eusman, Dianne van der Reyden
The Library of Congress
Mark Roosa
Pepperdine University
Sam Brylawski
University of California
Bill Klinger
ARSC
George Horn
Fantasy Records, Berkeley

Support from the Library of Congress, DoE, NEH, The Mellon Foundation

Corporate equipment donations, discounts, loan, and services from Aerotech, Archeophone, JH-Technology, Keyence, Microphotonics, National Instruments, Navitar, Newport, STIL, Uniforce, Veeco, Vidipax, Visicon

May, 16, 2005

Topics in Preservation Science
Lecture Series
Introduction

• We are developing methods of optically recovering mechanical sound recordings without contact to the medium

• Address concerns of the preservation, archival, and research communities:
 – Preservation: The reconstruction of delicate or damaged media
 – Access: Mass digitization of diverse media

• The approach evolved naturally out of methods of optical metrology, pattern recognition, and image processing.

• First shown at the LC in July 2003.
Traditional Contact Playback

Bulky stylus riding in a narrow groove => Issues with
• tracking
• condition of the groove
 • debris and contamination
 • wear
Transcription process: requires trained manpower or supervision.
May, 16, 2005

Topics in Preservation Science
Lecture Series

Carl Haber
LBNL.
Measurement Challenge

<table>
<thead>
<tr>
<th>Parameter</th>
<th>78 rpm, 10 inch</th>
<th>Cylinder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut</td>
<td>Lateral</td>
<td>Vertical</td>
</tr>
<tr>
<td>Area containing audio data</td>
<td>38600 mm²</td>
<td>16200 mm²</td>
</tr>
<tr>
<td>Total length of groove</td>
<td>152 meters</td>
<td>64-128 meters</td>
</tr>
<tr>
<td>Max groove amplitude (microns)</td>
<td>100 - 125</td>
<td>~10</td>
</tr>
<tr>
<td>Groove depth (microns)</td>
<td>80 fixed</td>
<td>+/- 10 varies</td>
</tr>
<tr>
<td>Groove displacement @noise level</td>
<td>1.6 - 0.16 microns</td>
<td>< 1 microns</td>
</tr>
</tbody>
</table>

Need to measure sub-micron features over entire surface of record
Non-Contact Digital Imaging

• Protects samples from further damage
• Repair existing damage through “touch-up”
• Offload aspects of restoration to automated software

A “smart” copying machine for records
The Method

- Digitally **image** the surface
- Cover with sequential **views** or **grid**.
- Stitched together: **surface map**
- **Process image** to remove defects
- **Analyze shape** to model stylus motion.
- **Sample** at standard frequency
- **Convert** to digital sound format.
- **Real time playback** is **not required**
2D Imaging: Electronic Camera

- Suitable for disc with lateral groove
- Require 1 pixel $= \sim 1$ micron on the disc surface
Chromatic Aberration
3D Imaging: Confocal Scanning Probe

Required for cylinder with vertical groove modulation.

Surface of an Edison cylinder

Reconstruct the surface from a large set of points

May, 16, 2005

Topics in Preservation Science Lecture Series

Carl Haber
LBNL.
Speed and Data

• 2D scans for lateral discs (IRENE)
 – Line scan camera: ~5-15 min/scan for 10” 78 rpm disc
 – 50 Mb / 1 s of raw images
 – 1.5 Mb / 1 s of processed images
 – 88 Kb / 1 s audio (4416)

• 3D scans for vertical media
 – Depends upon grid, probe rate
 – 12 KHz time sampling: 3-10 hours
 – 96 KHz time sampling: 24-80 hours
 – Additional factors of 2-4 may be available soon

• 3D for deep groove lateral discs
 – Much slower probe rates are probably required

Key 3D issues are slope and depth
Knowledge of groove geometry provides a powerful constraint for rejecting debris and damage.
Signal Analysis

- For recording and playback, signal is proportional to stylus velocity
 “electrical”: magnetic induction
 “acoustic”: plane wave approximation, air pressure and velocity are proportional and in-phase
- Electrical recordings are (deliberately) mediated by equalization scheme to attenuate low frequencies and boost high frequencies
- Acoustic recordings are (naturally) mediated by the frequency response of horns and diaphragms.
- Potential to improve fidelity with modeling of acoustic component response
- Groove data is in digital form, numerical analysis
- Determine velocity by numerical differentiation

\[A_p = \frac{v_p}{2\pi f} \]
Original Test of Concept (2002)

- Use available tools
- Optical metrology system “SmartScope” manufactured by Optical Gauging Products.
- Image acquisition with pattern recognition and analysis.
- Programmed to scan groove, report, and process data (offline).
- Study of 78 rpm shellac disc ~1950
- Very slow: 40 minutes / 1s of audio
Raw measurement of groove bottom edges

\[\Delta R \]

Averaged and filtered for known width

\[\Delta R_{\text{cut}} \]

Width across groove bottom

Frames aligned

Measurement spacing along time axis \(\sim 66 \text{ KHz} \)

Stylus velocity by numerical differentiation

4th order polynomial fit of 15 points about each sample

May, 16, 2005

Topics in Preservation Science Lecture Series

18 Carl Haber LBNL.
Waveform comparison

19.1 seconds

40 ms

- Clear reduction in “clicks and pops”
- Similarity of fine waveform structure
Sound Comparison

“Goodnight Irene” by H. Ledbetter (Leadbelly) and J.Lomax, performed by The Weavers with Gordon Jenkins and His Orchestra ~1950

Sound from the CD of re-mastered tape.
Sound from the mechanical (stylus) readout.
Sound from the optical readout.
optical + commercial noise reduction
LC Directions

1. The 2D test was promising, can you make a machine to run near real-time on discs? Could it address mass digitization needs? What about sound quality?
 • IRENE proposal

2. A research program to further the 3D technology.
 • Underway with support from LC, Mellon
Design of a 2D Machine

- 2003: LBNL supports design study for 2D machine
- LC: specs and media samples.
- Design, cost, schedule pass internal reviews at LBNL.
- Proposed to NEH 7/04, approved 1/05, de-scoped
- 2005: testing of real components in preparation of full engineering and coding process – this presentation
- Construction now – 3/06
I.R.E.N.E.
Image, Reconstruct, Erase Noise, Etc

- ~1 year development and construction
- Projected scan time 5-15 minutes
- Provide statistical measures of media condition
- Production-like machine and test-bed for future development
Basic Features and Goals

• 2D approach: image groove bottom and/or top.
• Emphasize throughput.
• Encompass as much variation in media as possible.
• Handle broken discs.
• Facility to (temporarily) flatten flexible media (Memovox)
• User friendly interface.
• Commercial off-the-shelf components.
• Provide a test bed for the mass digitization application.
• Project to be managed through LBNL Engineering Division, Dr. Jian Jin is PI
Testing and Validation Phase

- LC is to receive machine in early 2006
- Machine to be tested on a significant sample of media by LC staff
- Results to be documented and disseminated
- Possibility of a follow-on stage
 - Upgrades to the machine in software (easy) or hardware
 - Expanded media study
Advisory Panel

• Representation from technical or audio experts
 – Adrian Cosentini (Vidipax)
 – Vitaliy Fadeyev (LBNL)
 – George Horn (Fantasy Studios)
 – Charles Mayn (NARA)

• Representation from “user community”
 – Sam Brylawski (UC)
 – Jake Horniak (Smithsonian)
 – Mark Roosa (Pepperdine)
 – Anthony Seeger (UCLA)
 – Abby Smith (CLIR)
 – Sarah Stauderman (Smithsonian)
Media Condition Survey on LC Samples

- good 65%
- poor 10%
- fair 25%

Multiple edges
Rough groove bottom

May, 16, 2005
• 4000 pixel, 18 KHz line scan sensor
• Magnify to 1 pixel = 1 µm
• 7.6×10^5 lines/outer ring
 – 390 KHz sampling
• Time/ring = 40 seconds
• 73 mm / 4 mm = 19 rings
• 19 x 40 sec = 13 minutes
• Reduce with variable speed on inner rings: 9 minutes
• Scan time decreases linearly with sampling!!!.

Based upon 10 inch, 78 rpm geometry
Performance

<table>
<thead>
<tr>
<th>Feature</th>
<th>Targets</th>
<th>Best Effort</th>
<th>Upgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse grooves, track and measure groove bottom or top</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Measure additional features on groove wall</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Use of coaxial lighting</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of alternative lighting approach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reconstruct GOOD based on LOC sample set (Figure 7)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Reconstruct FAIR based on LOC sample set (Figure 8)</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Reconstruct POOR based on LOC sample set (Figure 9)</td>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>Scan time of 6-15 minutes on flat samples</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Processing time of 3-5 minutes</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Scan time on warped samples – as fast as practical</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Reconstruct Memovox or other highly warped items</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Reconstruct broken records, good quality debris</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reconstruct broken records, lower quality debris</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Exudated lacquers – well cleaned (Figure 11a left)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exudated lacquers–moderate cleaning (Figure 11a right,b)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Available sampling rates < 200 KHz</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available sampling rates > 200 KHz</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Reconstruct stampers</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data and statistical results on quality of scan and sample</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IRENE Test Platform

Stage motion controller
Line scan camera
Main lens
Motion stages
Vibration isolation table
Vertical stage for focus
Light sources
Fiber bundle
Support arch
Focus height sensor
Turntable and disc
Hardware Issues

- Linescan camera
 - Dalsa P2 4000 pixel, 18KHz, NI CameraLink interface
- Optics
 - Navitar 12x zoom with internal coaxial port – FOV issue
- Motion and interface
 - Newport and Aerotech products evaluated
- Focus
 - Keyence LKG series laser triangulation sensors
- Illumination
 - EXFO Omnicure, liquid light guide – exposure time issue
- Processing
 - Matrox RT Image processor to be evaluated – data flow and storage
Software Issues

• Considerable software for control, data taking, and analysis developed for tests
 – Utilize National Instruments LabView system and their IMAQ/Vision software
 – Algorithms and requirements derived from this

• Need to understand appropriate software environment for actual machine
 – Bring programmers/engineers into the effort at this point
Tests of IRENE Design

- Preliminary results from prototype configuration
 - Used low intensity illumination
 - Camera 1K lines/s (use 18 K in real system) - 13 s scan/ 1 s audio
 - Raw time sampling was 104 KHz
 - RIAA curve applied for purpose of comparison with stylus

- Shellac 78 rpm discs
 1. Good condition
 2. “Good Night Irene” from original test (comparison)
 3. Very worn disc
 4. Distorted audio

- Acetates
 - 1950’s studio music take
 - 1938 spoken word

- Photos of media array
Good Shellac: Waveform Comparison

Stylus

IRENE test platform
Sound Comparison

God Bless America

Composed by Irving Berlin, performed by Kate Smith
Victor release

Stylus version

Optical version using IRENE test platform

May, 16, 2005

Topics in Preservation Science
Lecture Series

36 Carl Haber
LBNL.
Test: Modulated Noise

“Good Night Irene” disc used in original study

From original 2D optical study (40 min / 1 s of audio)

From IRENE test (13 s / 1 s of audio)
Spectra
Test: Defects etc.

Dirty and worn
When You and I Were Young, Maggie
Composer: Johnson and Butterfield
Performed by Charles Harrison
Victor 17474-B

- Stylus version
- IRENE test scan

Some audio distortion
Uchar Kupietz (folksong)
Performed by Vera Smirnova
Columbia 20115-F

- Stylus version
- IRENE test scan
Acetates

45 rpm fine groove with No groove bottom image Labeled: “Jailhouse Rock, RCA property”

78 rpm lacquer on glass Label: Howard Hughes, Collier Award 1939
Unusual Media Survey: Images Reasonable

Thanks to T. Aukofer

May, 16, 2005

Topics in Preservation Science Lecture Series

41 Carl Haber
LBNL.
IRENE Summary

• Baseline hardware identified and tested.
• Projected scan time reasonable for a production-like machine.
• Software development will be the major task
• Would also provide a powerful test-bed for further development.
• Provides a new statistical view of disc media
Test of 3D Scanning

• Initial test in collaboration with Taicaan Technology and U of Southampton, UK
 – Presented at LC May 2004
 – To appear in JAES June 2005
• Scan speed was not emphasized, wanted to perform a proof-of-concept (~2 hr / 1 s audio)
• Faster 3D scanner now in operation at LBNL
3D Study of an Edison Cylinder

Utilize confocal scanning probe at 300, 1000, 4000 Hz, 7.5 µm spot, 10 µm points
Angular increment = 0.08 - 0.01° = 12 - 96 KHz time sampling
Sample at 96KHz to minimize effect of aliasing

Sequential axial scans

Subtract valleys from ridges to correct for overall shape

Overall cylinder shape due to off-center, deformation, heard as low freq rumble

Ridge tops provide a useful, though imperfect, geometrical reference
Sound Comparison

• The Holy City, composed by Stephen Adams,
The Edison and Skedden Mixed Quartet, Amberol 1601

• Stylus version - flat
• Optical version (1 KHz probe rate) - flat
• Optical version + commercial filter + EQ
• Optical version (4 KHz probe rate)
Response of horn and diaphragm at low frequency can modify response and deviations from “constant velocity” characteristic.
The Holy City: Waveforms
Sound Comparison

• “Just Before the Battle, Mother”, composed by George F. Root, performed by Will Oakland and Chorus 1909, 1516 (.076; 4M-297-2) originally as Amberol #297 1909

• with stylus, flat equalization

• Optical version, flat equalization

• + commercial noise reduction + low frequency boost

*thanks to George Horn, Fantasy Records, Berkeley
2nd Sound Comparison

- Hawaiian Guitar Duet
 Louise and Ferrara, Edison Blue Amberol 3065
- Stylus version
- Optical version (1 KHz probe rate)
3D Research Plan

- Study data quality versus probe speed and grid spacing to optimize overall scan time.
- Study media with mould growth and other damage.
- Development of scratch correction code.
- 3D studies of disc media.
- Interferometry study (data in-hand)
Scan Time Issues

• Factors which effect scan time
 – Probe measurements / s
 • Now at 4K /s
 • Tests have been done at 10K and 30K
 • Key issue is bright light source
 – Time sampling
 • Tests done at 96 KHz, 24 KHz, 12 KHz
 – Points across groove
 • 10 is sufficient for typical cases - how few?

• Present case
 – 4K probe + 96 KHz sample + 10 pts/groove ~ 30 hrs

• What is ultimate (“access”) case?
 – 30K probe + 12 KHz sample + 5 pts/groove ~ 30 min
Effect of Reduced Time Sampling

- Raw data sampled at 96 KHz (5µm grid)
- Reanalyze at 24 KHz
- Increased noise in audio band due to aliasing, though not audible
- Factor of 4 gain in scan speed
Cylinder with mould

May, 16, 2005

Topics in Preservation Science
Lecture Series

56 Carl Haber
LBNL.
3D Scans on discs

- Data loss on slope are key issue
- Don’t expect scans as fast as cylinders
- Compare to IRENE-2D
Outreach and Collaboration

• The media and public have shown interest in these efforts
 – Newspaper and magazine stories (NYT, SF Chron, Trade pubs..)
 – Radio interviews (NPR, Osgood, BBC,…)
 – TV coverage, documentary inquires
 – Inquires from individuals – hundreds of emails
 – Requests pertaining to specific samples

• Invited talks ~ 25 so far

• A good vehicle to communicate the value of science, basic research, and culture. Make a point of this.
Further Collaboration and Activity

- Interest from NARA re: dictation belts
- J. McBride at Southampton UK, recv’d ~1M$ from UK gov’t for research in this area, (Victoria cylinder)
 - Visit in July
 - Plans to send a PhD student to Berkeley
- O. Johnsen at EIF-Fribourg, Switzerland runs the VisualAudio project (use of films)
 - 2 students to Berkeley this summer for 3 months
- I. Fujinaga, McGill U., 3D scanning
- Invitation to visit Discoteca del Stato, Rome
Why I read Physics Today

May, 16, 2005

Topics in Preservation Science
Lecture Series
Conclusions

• Image based methods have sufficient resolution to reconstruct audio data from mechanical media and reduce impulse noise.

• 2D approach may be suitable for mass digitization. IRENE will address this and other key issues.

• At present 3D methods are suitable for reconstruction of particular samples since they require ~hours per scan.

• Ongoing 3D research program addressing issues of ultimate scan time, damaged media. A 3D “IRENE” system next?

• Considerable professional and public interest, growing community

• Info at URL www-cdf.lbl.gov/~av