EbE Vertexing for Mixing (CDF-7673)

${\sf D}_{\sf s}{}^{*}$ and other "reflections"

Alessandro Cerri, Marjorie Shapiro

Aart Heijboer, Joe Kroll UPenn

Two Talks in One

- EbE vertexing and ct scale factor:
 - We preblessed and didn't bless, why?
 - Where are we
 - Conclusions and plans
- Partially reconstructed Bs modes:
 - Why bother?
 - How to improve the naïve approach
 - Is it feasible?
 - Plans

Problems after preblessing

- It was pointed out that our statistics is significantly lower than the standard analyses
- We identified the cuts responsible for that and relaxed them

The samples (after relaxing cuts)

~22000 fully reco'd B, ~100000 Fully reco'd D+, ~16000 fully reco'd ψ^\prime

Montecarlo: mostly BGEN (basically all of the above+B_s), using Pythia if possible

This comes with a price though!

	J/yK⁺ BGEN	J ∕y K⁺ Pythia	J/yK⁺ Data	J/yK*+ MC	J/yK*+ Data	K⁺ pp MC	K⁺ pp Data	J /ypp MC	J/ ypp Data
N-1 L _{xy} Pull	1.18±0.02 ±0.4	1.24±0.016 ±0.12	1.35±0.017 ±0.4	1.18±0.02 ±0.3	1.56±0.02 ±0.2	1.14±0.009 ±0.02	1.22±0.004 ±0.03	1.16±0.02 ±0.1	1.21±0.01 ±0.2
N-1 d _o Pull	0.97±0.02 ±0.3	1.13±0.014 ±0.07	1.19±0.014 ±0.4	0.99±1.3 ±0.2	1.31±0.02 ±0.2	1.08±0.00 8 ±0.02	1.02±0.003 ±0.03	1.04±0.02 ±0.1	1.11±0.008 ±0.3
MC X _{SV} pull	1.30±0.02 ±0.01			1.23±0.02 ±0.01		1.13±0.01 ±0.15		1.21±0.02 ±0.04	
MC Y _{SV} pull	1.25±0.02 ±0.2		<1 0	1.28±0.02 ±0.09		1.14±0.01 ±0.2		1.27±0.02 ±0.15	
MC Z _{SV} pull	1.17±0.02 ±0.03		<20 <3σ	1.15±0.02 ±0.01		1.16±0.01 ±0.01		1.09±0.02 ±0.07	
MC Lxy Pull	1.15±0.02 ±0.04			1.18±0.02 ±0.04		1.17±0.01 ±0.15		1.20±0.02 ±0.01	

Large systematic uncertainties (up to 30%) and data/mc disagreement

Differences with Preblessing

- 1) We gain in statistics: consistent signal yield with CCKM analyses
- 2) Looser cuts \rightarrow secondary vertex pulls in general get larger
- 3) Pay another price: larger pull discrepancy between data and MC
- The main source of 1) and 2) seems to be the χ^2 cut:

This does not quite explain 3), since agreement between data and MC seems pretty good!

Data-MC disgreement

- Disagreement is as large as O(30%)
- Can't be neglected
- A difference in the distributions? (kinematics, geometry, chi2 etc.)
- $\chi^2{}_{3D}$ is not well reproduced, but we moved to $\chi^2{}_{xy}$
- Other discrepancies? No evident single-variable ones:

We compare systematically all the distributions and pull behaviors for the various samples, against MC

Bottomline

With larger statistics, relaxed cuts:

- No more dependence on ct/L_{xy}
- Kinematics MC and data differ significantly
- However Pulls don't seem to depend on those (individually)
- Pulls do depend on χ^2 but this is expected since χ^2 can be expressed as a linear function of the pulls themselves!
- Pulls generally larger but far from the '7500 numbers (~1.3)
- We are re-generating MC samples as close as possible to the data kinematics

Reproducing the '7500 approach

•We are able to roughly reproduce the '7500 quantity (L_{xy} of 'fake' B)

•We spent some time figuring out the discrepancies in our samples: skimming is in progress with selections as close as we can to the blessed result

•Remember this is a quantity which is DI FFERENT from what we usually use in our study

•For this sample there are reasons to believe that several variables (e.g. χ^2 , isolation etc.) shouldn't have the same distributions as the data:

•Presence of D⁺ and/or pions from secondaries will make it larger than in signal!

•Trigger confirmation different (D daughters only vs all B daughters)

•L_{xy} pull is bound to grow indefinitely with χ^2 for "background"!

•Larger $\chi^2 \Rightarrow$ wider pull

In any approach: a tight cut on χ^2 (and any sensitive selection variable) will reflect in a modification of the expected L_{xy} pull, no matter what the definition is!

Conclusions on scale factors

- •Changing cuts changes the scale factor
- •Changing fit model changes the scale factor
- •The scale factor is not really a "scale factor": hidden dependencies
- •A scale factor of 1.4 for the current analyses is "conservative" in terms of the limit we obtain
- •For the future We know we can improve things!
- •In progress:
 - •Cross check of blessed result: final word on reproducing the '7500 numbers
 - •MC generation to improve systematic uncertainty on PV and SV scale factors
 - •What is the best way of correcting the χ^2 dependence?

 $D_s^* \& co.:$ anything below $D_s \pi$ containing useful information $([D_s \gamma]\pi, D_s Iv, D_s \pi, D_s \rho...)$

A closer look at the MC mass distribution

- •All histograms BGEN 5.3.1 with lum.avg. full simulation
- •Below Main peak:
 - •Photon background nastier than the rest: leaks in!
 - ⇒Larger uncertainty and correlation in the fit
 - \Rightarrow Extend to B_s to use detailed fit developed by Hung-Chung for B⁰ decays
- Oifferent backgrounds overlap in the 'satellite' region
- Mass cut should help rendering K factors similar

Once you get below the fully reco'd peak, you have to bite the bullet and deal with all the modes leaking in!

Yields from mass fit

- Fit analogous to CCKM: same sample, similar results
- Fit systematics are a problem, especially for nonfully reco'd stuff:
 - Combinatorial background could be a problem: d₀(EbE) helps!
 - $B \rightarrow DK$ has 200% uncertainty until we measure the BR!
 - Photon leak-in depends on detector resolution (can probably be controlled looking at the B^o edge)
 - Keeping under control intermode correlations will be crucial!

D_s^*

(..and $D_s \rho$, and partially reconstructed more in general)

- Take this as an example: it is inevitable to have to deal with all the different modes at once!
- Interesting 'cheap' way of doubling our hadronic statistics
- $Bs \rightarrow D_s^* \pi \rightarrow [D_s \gamma] \pi$
 - Small q for in D_s^* decay (analogous to $D^* \rightarrow D\pi$)
 - Photon ~parallel to Ds
- What is the loss in momentum (ct) resolution?
 - Negligible: happy hadronic-style analysis
 - Not Negligible: mixed semileptonic-like approach
 - K factor
 - There are interesting differences and analogies (focus of this talk)

Naïve approach

0.3

0.2

0.1

— D_sπ

D_sK

D_sγπ

 $D_{s}\rho$

 $D_{s}\rho$ m>5

1.05

- K factor (M_{Bs}/P_t) distr.^{0.5}
 from realistic MC: 04
 - ~10% uncertainty
 - On B momentum
 - Much better than
 Semileptonics
 - Still NOT negligible
- Technically, Bs mixing on this sample is like measurement on the semileptonics:
 - Better momentum resolution
 - Nastier background:
 - Oscillating
 - Many hard to disentangle components (ρ,D_s*,μ/e,D_sK,?), each with (at least in principle) different K factor

Improving the ct resolution

- Different strategies can be applied to 'recover' information on the missing momentum:
- $B_s \rightarrow D_s$ K: use the right mass assumption/don't use M in the K factor!
- $B_s \rightarrow D_s X [4 unknowns]$
 - I mpose Bs invariant mass (1 constr.)
- Bs \rightarrow D_s ρ , D_s $\gamma\pi$ [3 unknowns]
 - D_s^* (or ρ) invariant mass (1 constr.)
 - D_s^* small $q \Rightarrow \gamma$ ~parallel (<0.1 rad) to D_s (~2 constr.)
- L_{xy}/σ_{Lxy} >7 \Rightarrow reasonable lever arm for geometrical measurement of B direction
 - Beamline / 2D EbE (1 constr.)
 - 3D EbE (2 constr.)
- 2 Ways of applying each of this:
 - Explicitly solve equation and derive quantity (easier)
 - Refit topology (à la CTVMFT) with additional constraint(s) (more complicated)

Ds* Mode

- Used as benchmark, once the technology is there it can easily be expanded to semileptonic and hadronic modes
- Today's results based on explicit solution
- Feasibility of full refit under way
- We will explore the following cases:
 - Bs mass and $P_{\gamma} \propto P_{Ds}$ constraints (2+1)
 - Ds^{*}-Ds mass and $P_{\gamma} \propto P_{Ds}$ constraints (2+1)
 - Full 3D pointing constraint plus a combination of Bs and Ds*-Ds constraint (2+1)
 - 2D pointing constraint using beamline plus full Bs and Ds*-Ds constraints (1+1+1)
 - 2D pointing constraint using EbE plus full Bs and Ds*-Ds constraints (1+1+1)
- Result evaluated looking at the derived 'K factor'

Comparison of K factors

Naïve derivation in several cases worse than upfront uncertainty

Fully constrained refit is bound to be better, how much? (work in progress)

Conclusions

- Easiest inclusion of Ds* (& friends) is just a replica of the semileptonic approach
- Separation of modes and possible discrepancy in K factors could raise serious issues?
- Improvement on first-round is in principle possible:
 - several constraints at hand
 - Need lots of information (track parameters, covariances, vertices...)
- Aim:
 - get the last word on how much we can improve before proceeding to a full-fledged analysis
 - Reach a reasonable compromise between complication and improvement!
 - We want to measure the Bs lifetime including all these modes:
 - Important independent analysis
 - Fundamental cross-check for partially reconstructed modes
 - BR(B_s \rightarrow D_sK) Will come "for free" (piggyback on B⁺ \rightarrow DK/ π)