EbE Vertexing for Mixing Update (CDF-7673)

Alessandro Cerri, Marjorie Shapiro

Aart Heijboer, Joe Kroll UPenn

Why our yields are lower when compared with other analyses on the same samples?

- Short answer: fixed
- Long answer: most this talk
- Two cuts mostly responsible:
- χ^2_{fit} was rather tight (χ^2_{3D} <10-15 in most cases)
- Mass histograms were filled with pretty tight requirements on the Primary Vertex:
 ∃ of at least two PV (for V₁-V₂)
- Various other cuts were tighter than necessary

The samples (before relaxing cuts)

~15000 fully record B, ~69000 Fully record D+, ~6000 fully record ψ ' (re-running) Montecarlo: mostly BGEN (basically all of the above+B_s), using Pythia if possible

The samples (before relaxing cuts)

~22000 fully reco'd B, ~100000 Fully reco'd D+, ~16000 fully reco'd ψ^\prime

Montecarlo: mostly BGEN (basically all of the above+ B_s), using Pythia if possible

This comes with a price though!

	J/yK⁺ BGEN	J ∕y K⁺ Pythia	J/yK⁺ Data	J/yK*+ MC	J/yK*+ Data	K⁺ pp MC	K⁺ pp Data	J/ ypp MC	J/ ypp Data
N-1 L _{xy} Pull	1.18±0.02 ±0.4	1.24±0.016 ±0.12	1.35±0.017 ±0.4	1.18±0.02 ±0.3	1.56±0.02 ±0.2	1.14±0.009 ±0.02	1.22±0.004 ±0.03	1.16±0.02 ±0.1	1.21±0.01 ±0.2
N-1 d _o Pull	0.97±0.02 ±0.3	1.13±0.014 ±0.07	1.19±0.014 ±0.4	0.99±1.3 ±0.2	1.31±0.02 ±0.2	1.08±0.008 ±0.02	1.02±0.003 ±0.03	1.04±0.0 2 ±0.1	1.11±0.008 ±0.3
MC X _{SV} pull	1.30±0.02 ±0.01			1.23±0.02 ±0.01		1.13±0.01 ±0.15		1.21±0.02 ±0.04	
MC Y _{SV} pull	1.25±0.02 ±0.2			1.28±0.02 ±0.09		1.14±0.01 ±0.2		1.27±0.0 2 ±0.15	•
MC Z _{SV} pull	1.17±0.02 ±0.03			1.15±0.02 ±0.01		1.16±0.01 ±0.01		1.09±0.0 2 ±0.07	•
MC Lxy Pull	1.15±0.02 ±0.04			1.18±0.02 ±0.04		1.17±0.01 ±0.15		1.20±0.0 2 ±0.01	

Large systematic uncertainties (up to 30%) and data/mc disagreement

Differences with last BPAK

- 1) We gain in statistics
- 2) Secondary vertex pulls in general get larger
- 3) We pay a price: larger discrepancy between data and montecarlo
- The main source of 1) and 2) seems to be the χ^2 cut:

This does not quite explain 3), since agreement between data and MC seems pretty good!

Data-MC disgreement

- Disagreement is as large as O(30%)
- Can't be neglected
- A difference in the distributions? (kinematics, geometry, chi2 etc.)
- $\chi^2{}_{3D}$ is not well reproduced, but we moved to $\chi^2{}_{xy}$
- Other discrepancies?

We compare systematically all the distributions and pull behaviors for the various samples, against MC

I solation

Pythia shows pretty good agreement, BGEN has discrepancies in kinematics

Kinematics

• χ^2_{xy}

- Kinematics
- •Si hits assignment

•Kinematics

(MC generated with FakeEv)

Bottomline

With larger statistics, better cuts:

- No more dependence on ct/L_{xv}
- Kinematics MC and data differ significantly
- However Pulls don't seem to depend on those
- Pulls do depend on χ^2 but this is expected since χ^2 can be expressed as a linear function of the pulls themselves!
- Pulls generally larger but far from the '7500 numbers (~1.3)

Repeating the '7500 approach

Strategy

- Same sample
- Same selections
 - |d₀(D)|<100μm
 - $|M_{D}-M_{PDG}| < 8 \text{ MeV}$
 - $5.4 < M_B < 5.6$
 - χ^2_{XY} <15
- plus:
 - Right D- π charge (x0.5)
 - $\Delta R(all B/D daughters) < 2$
 - Lxy(D)>300 μm
 - (~100% efficient because of trigger bias)
 - Pt(D)>5.5 GeV
- ~170K events (working on figuring out what's the source of the discrepancy in statistics!)
- Overall Lxy pull in good agreement with MIT fits: 1.316±0.003 (width is rather sensitive on fit range & model though!)
- Dependencies?

Caveat: Pull width depends a lot on fit details Example: switch fit range from ± 2 to $\pm 2\sigma$

We must be very careful in defining what we want to really measure: even legitimate changes in the "model" can produce significant variations!

Distribution for "prompt" $B \rightarrow D\pi$

Pulls for "prompt" $B{\rightarrow} D\pi$

Example of Pull vs Chi fits

•Fit quality is good at low statistics

- •Fit gets worse at low chi / larger statistics
- •...fit systematics dominates over statistical uncertainty...

Pull depends on cuts and samples!

Width depends on chi2

•Pull definitely depends on χ^2

• χ^2 distribution is different between signal and "prompt" B \rightarrow D π

The '7500 plots

Bottomline

- •We are able to roughly reproduce the '7500 quantity (L_{xy} of 'fake' B)
- •Remember this is a quantity which is DI FFERENT from what we usually use in our study
- •For this sample there are reasons to believe that χ^2 shouldn't be populated like for the signal:
 - •Presence of D⁺ and/or pions from secondaries will make it larger than in signal!
- •L_{xv} pull is bound to grow indefinitely with χ^2 for "background"!
- •Larger $\chi^2 \Rightarrow$ wider pull

In any approach: a tight cut on χ^2 will reflect in a modification of the expected L_{xy} pull, no matter what the definition is!

Conclusions

•Changing cuts changes the scale factor

- •Changing fit model changes the scale factor
- •The scale factor is not really a "scale factor": hidden dependencies

•A scale factor of 1.4 for the current analyses is "conservative" in terms of the limit we obtain

•For the future We know we can improve things!

Backup

PV Scale Factor (no beam constr.)

•Can be probed directly on data using V_1 - V_2

•Consistent picture in data: O(1.38)

•Monte Carlo after LOO re-weighting shows similar numbers (bottom right)

•Measured systematics from fit model and across samples [effect is O(5%)]

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

PV scale factor: other plots (X,Y,Z)

5% Uncertainty

Pull uncertainty is dominated by:

- Variability among samples
- Systematic uncertainty from fit model

PV scale factor dependencies (X)

PV scale factor: details (à la CDF7500)

Conclusions on PV

- Scale factor measured on data
- Stable (within 5%):
 - Among samples
 - No evidence of dependencies
- We can move to the next step!

Beamline

d₀(B): properties and limitations

- Three possible ways of measuring PV:
- 1) Beamline
- 2) Track based Primary Vertex (TBPV)
- 3) TBPV constrained to beamline ("EbE")
- What enters in $\sigma(d_0)$:
- a) Beam (1,3)
- b) Secondary vertex (1,2,3)
- c) TBPV (2,3)
- None of (1,2,3) probes only one piece!
- ⊗Regime (relative contribution of a,b,c) differs between (1,2,3) but also between L_{xy} and d₀!

Let's see what happens in a real case...

Limit to the d_0 / L_{xv} analogy

R

SV resolution ellipsoid is elongated and "seen from" different angles by d_0 and L_{xy} !

'D' Vertex error ellipsoid

• anisotropy (mean±RMS)

'D' Vertex error scale [in

^ε 100μm units] (mean±RMS)

 $\mathbf{B} \rightarrow \mathbf{J}/\psi \mathbf{K}^{\dagger}$ (0.95 ± 0.61) MC $B \rightarrow J/\psi K^{+}$ (0.91 ± 0.6) σ_{Lxy} σ_{d0} σ_{Lxy} σ_{d0} $MC^{reweight}_{0.94 \pm 0.6} B \rightarrow J/\psi K^{+}$ $\mathbf{B} \rightarrow \mathbf{J}/\psi \mathbf{K}^{2}$ (0.96 ± 0.9) 23 27 PV 1 / $D^+ \rightarrow K\pi\pi$ (2.4 ± 0.9) ----- $MC^{\text{prompt}}_{(2.3 \pm 0.9)} D^+ \rightarrow K\pi\pi$ SV 36 36 12 12 $\begin{array}{c} \mathbf{MC}^{\mathsf{B}} \ \mathbf{D}^{\mathsf{+}} \xrightarrow{} \mathbf{K} \pi \pi \\ (2.3 \pm 0.9) \end{array}$ $\psi' \rightarrow J/\psi \pi \pi$ (1.2 ± 0.62) Sum 27 45 21 43 -4 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 d_0 and L_{xy} probe different regimes of σ_{PV}/σ_{SV} : d_0 dominated by PV, L_{xv} dominated by SV

Beam Constrained Not Beam Constrained

Back to d_0 : Comparison among samples and with MC Track based EbE Beamline EbE (with beam constr.) $\mathbf{B} \rightarrow \mathbf{D}^{\circ} \pi^{+}$ $B \rightarrow D^{\circ} \pi^{+}$ $\mathbf{B} \rightarrow \mathbf{D}^{\circ} \pi^{+}$ $(0.98 \pm 0.015 \pm 0.01)$ $(1.17 \pm 0.02 \pm 0.02)$ $(1.13 \pm 0.02 \pm 0.02)$ $B \rightarrow D^{-}\pi^{+}$ $B \rightarrow D^{*}\pi^{+}$ H $(1.15 \pm 0.02 \pm 0.02)$ $(1.06 \pm 0.015 \pm 0.016)$ $\mathbf{B} \rightarrow \mathbf{D}^{-} \pi^{+}$ $B \rightarrow J/\psi K^*$ $B \rightarrow J/\psi K^*$ H $(1.15 \pm 0.02 \pm 0.02)$ $(1.13 \pm 0.02 \pm 0.02)$ $(1.05 \pm 0.02 \pm 0.03)$ $MC^{reweight} B \rightarrow J/\psi K^*$ ю $B \rightarrow J/\psi K^+$ $B \rightarrow J/\psi K$ ╟╋╋┥ $(1.04 \pm 0.02 \pm 0.03)$ $(1.12 \pm 0.03 \pm 0.02)$ $(1.23 \pm 0.03 \pm 0.05)$ $B \rightarrow J/\psi K^*$ hal $(1.09 \pm 0.03 \pm 0.02)$ $MC^{reweight} B \rightarrow J/\psi K$ HOH $B \rightarrow J/\psi K$ - $MC^{reweight} B \rightarrow J/\psi K^* \Theta$ $(1.05 \pm 0.02 \pm 0.02)$ $(0.97 \pm 0.02 \pm 0.02)$ $(1.19 \pm 0.03 \pm 0.02)$ $\psi' \rightarrow J/\psi \pi \pi$ $y' \rightarrow J/\psi \pi \pi$ $(1.15 \pm 0.01 \pm 0.02)$ $(1.22 \pm 0.02 \pm 0.02)$ $\psi' \rightarrow J/\psi \pi \pi$ $MC^{reweight} \psi' \rightarrow J/\psi \pi \pi \vdash \bigcirc$ $\text{MC}^{\text{reweight}} \psi' \rightarrow J/\psi \pi \pi$ Θ $(1.23 \pm 0.02 \pm 0.02)$ $(0.99 \pm 0.03 \pm 0.02)$ $(1.03 \pm 0.03 \pm 0.02)$ dan hadan badan badan ba 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 0.7 0.8 0.9 1.05 1.1 1.15 1.2 1.25 1.3 1 1.1 1 Beamline and SV Beamline and SV SV

Source of deviations from 1

Evidences of underestimate of beamline and SV errors!

Why blow-up on the beamline does not concern L_{xy}

- •Back-of-the-envelope calculations:
 - •Typical 'long run'
 - •I nitial and final luminosities
 - •On-line (SVT) beam width measurement confirms estimate
 - •Tested on single run
- Why it is of marginal relevance:
- •Using 'average beam width' attenuates the effect: $30\% \rightarrow 20\%$:

	σ [μm]	Pull [%]
L _{xy}	+0.5	+2%
d _o	+2	+6%

Other sources not investigated, however: not much of a concern for L_{xy^\prime} relevant for d_0

Bottom line

- d₀ pulls show effect of non unitarity of:
 - Beamline pulls
 - Secondary vertex pulls
- Restoring beamline pulls' unitarity is of marginal (2%) relevance for Lxy
- Let's move on to the secondary vertex!

Secondary Vertex

"N-1" L_{xy} : data and MC B \rightarrow D L_{xy} pull [width ± stat ± syst]

•Computed L_{xy} pulls for the various samples

- Compared to MC evaluation
- •Pretty good agreement!

•MC seems to account for (possible) inter-sample variations and absolute scale of pulls! $\textbf{B} \rightarrow \textbf{J}/\psi~\textbf{K}^{+}$ ($1.21 \pm 0.02 \pm 0.02$)

 $\begin{array}{l} \textbf{MC}^{reweight} \; \textbf{B} \rightarrow \textbf{J}/\psi \; \textbf{K}^{\star} \\ (\; 1.22 \; \pm 0.02 \; \pm 0.04 \;) \end{array}$

 $\begin{array}{c} \textbf{B} \rightarrow \textbf{J}/\psi \; \textbf{K}^{\star} \\ (\; 1.19 \; \pm \; 0.03 \; \pm \; 0.01 \;) \end{array}$

 $D^+ \rightarrow K\pi\pi$ (1.117 ± 0.005 ± 0.02)

 $\begin{array}{c} \mathbf{MC^{rew.\ prompt}\ D^{+} \rightarrow K\pi\pi} \\ (1.14 \ \pm 0.002 \ \pm 0.03 \) \end{array}$

 $\psi' \rightarrow \mathbf{J}/\psi \pi \pi$ $(0.98 \pm 0.015 \pm 0.01)$

 $\begin{array}{ll} \mathbf{MC}^{\mathsf{reweight}} & \psi' \rightarrow \mathbf{J}/\psi \pi \pi & \mathbf{I} \\ (1.03 \pm 0.05 \pm 0.02) \end{array}$

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

 Θ

Dependencies

Look for evidence of dependencies on geometry, kinematics etc:

• Pick a suitable set of variables:

Z of SV Pt of SV Combined Pt of tracks in SV Ct of SV L_{xy} of SV ϕ of SV I solation of candidate B (Δ R<0.7) Δ R single track-rest of vertex $\begin{array}{l} \Delta \phi \mbox{ single track-rest of vertex} \\ Pt \mbox{ of single track} \\ \eta \mbox{ of SV} \\ \# \mbox{ tracks with } L_{00} \mbox{ hits in SV} \\ \# \mbox{ tracks with stereo hits in SV} \\ \mbox{ Combined Pt of tracks in SV } (\Delta \phi < 0.3) \\ \mbox{ Combined Pt of tracks in SV } (\Delta \phi > 0.3) \end{array}$

- Compare how various samples probe them
- Check pull vs variables

Selected Plots

•We expect some variation as a function of Z (for instance, because of detector structure)

•Ct dependence?

•All variations well within $\pm 10\%$ when integrated over kinematics

SV scale factor: details (à la CDF7500)

"N-1" d₀: a cross check!

- •Compute also d_o pulls for the various samples
- •Compare to MC evaluation
- •Pretty good agreement here as well!

•Good job with the realistic simulation+reweighting!

B pion d_o WRT D vertex pull [width \pm stat \pm syst]

 $\begin{array}{c} \textbf{B} \rightarrow \textbf{J}/\psi \; \textbf{K}^{+} \\ (\; 1.02 \; \pm 0.02 \;) \end{array}$

 $\begin{array}{l} \textbf{MC}^{\text{reweight}} \textbf{B} \rightarrow \textbf{J/\psi} \textbf{K}^{+} \\ (1.13 \pm 0.02 \pm 0.07) \end{array}$

 $\mathbf{B} \rightarrow \mathbf{J}/\mathbf{\psi} \mathbf{K}^{\star}$ $(1.04 \pm 0.03 \pm 0.04)$

╟╋═╫┨

H

H

 $\begin{array}{c} \textbf{MC}^{\text{reweight}} \textbf{B} \rightarrow \textbf{J}/\psi \textbf{K}^{*} \\ (0.92 \pm 0.02 \pm 0.02) \end{array}$

 $D^{+} \rightarrow K\pi\pi$ $(1.03 \pm 0.005 \pm 0.02)$

 $\begin{array}{c} \mathbf{MC^{rew.\ prompt\ }D^{+} \rightarrow K\pi\pi} \\ (1.09 \pm 0.002 \pm 0.03) \end{array}$

 $\psi' \rightarrow \mathbf{J}/\psi\pi\pi$ (0.92 ± 0.013)

 $\mathbf{MC}^{\text{reweight}} \psi' \rightarrow \mathbf{J}/\psi \pi \pi$ $(0.97 \pm 0.04 \pm 0.01)$

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

SV scale factor from MC

Now that we know to what extent we can rely on MC, let's look at reconstructed-truth!

 $SV_{reco}-SV_{truth}$: X $SV_{reco}-SV_{truth}$: Y $SV_{reco}-SV_{truth}$: Z $(1.16 \pm 0.02 \pm 0.15)$ $(1.15 \pm 0.02 \pm 0.1)$ $(1.21 \pm 0.02 \pm 0.2)$ $\begin{array}{c|c} \mathbf{MC}^{\mathsf{reweight}} \mathbf{B} \to \mathbf{D}^{\mathsf{-}} \pi^{\mathsf{+}} & & & \\ (1.13 \ \pm 0.02 \ \pm 0.15 \) & & \\ \end{array}$ $(1.22 \pm 0.02 \pm 0.2)$ $(1.18 \pm 0.02 \pm 0.2)$ $MC^{reweight} B \rightarrow J/\psi K^{+}$ $MC^{reweight} B \rightarrow J/\psi K^{+}$ $(1.22 \pm 0.03 \pm 0.01)$ $(1.15 \pm 0.03 \pm 0.05)$ $(1.28 \pm 0.03 \pm 0.01)$ $MC^{reweight} B \rightarrow J/\psi K^{*}$ $MC^{reweight} B \rightarrow J/\psi K^{*}$ $MC^{reweight} B \rightarrow J/\psi K^{*}$ Θ $(1.21 \pm 0.03 \pm 0.01)$ $(1.21 \pm 0.03 \pm 0.01)$ $(1.12 \pm 0.02 \pm 0.01)$ $MC^{rew. prompt} D^{+} \rightarrow K\pi\pi$ $MC^{rew. prompt} D^{+} \rightarrow K\pi\pi$ $MC^{rew. prompt} D^{+} \rightarrow K\pi\pi$ Ħ $(1.11 \pm 0.01 \pm 0.1)$ $(1.12 \pm 0.01 \pm 0.1)$ $(1.16 \pm 0.01 \pm 0.01)$ $MC^{reweight} \psi' \rightarrow J/\psi \pi \pi$ $MC^{reweight} \psi' \rightarrow J/\psi \pi \pi$ $MC^{reweight} \psi' \rightarrow J/\psi \pi \pi$ $(1.14 \pm 0.03 \pm 0.01)$ $(1.2 \pm 0.03 \pm 0.05)$ $(1.08 \pm 0.03 \pm 0.01)$ $MC^{reweight} B_s \rightarrow D_s \pi$ $MC^{reweight} B_s \rightarrow D_s \pi$ $MC^{reweight} B_s \rightarrow D_s \pi$ Θ Θ $(1.24 \pm 0.01 \pm 0.05)$ $(1.21 \pm 0.01 \pm 0.07)$ $(1.16 \pm 0.01 \pm 0.02)$ harden harden berek Innhadaahaahaahaahaahaahaah

0.2

0.4

0.6

0.8

1

1.2

0.4

0.6

0.8

1.2

1

1.4 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

SV scale factor from MC

...projected along P_t, and broken down into PV and SV contribution:

L_{xy}^{reco}-L_{xy}^{truth} $MC^{reweight} B \rightarrow D^{\circ} \pi^{+}$ $(1.14 \pm 0.01 \pm 0.04)$ $(1.12 \pm 0.02 \pm 0.11)$ $MC^{reweight} B \rightarrow J/\psi K^{+}$ $(1.12 \pm 0.03 \pm 0.05)$ $MC^{reweight} B \rightarrow J/\psi K^{\star}$ $(1.15 \pm 0.03 \pm 0.01)$ $\mathsf{MC}^{\mathsf{rew. prompt}} \mathsf{D}^{\mathsf{+}} \to \mathsf{K}\pi\pi \hspace{0.1cm} \longmapsto \hspace{0.1cm}$ $(1.16 \pm 0.01 \pm 0.15)$ $MC^{reweight} \psi' \rightarrow J/\psi \pi \pi$ $(1.14 \pm 0.02 \pm 0.01)$ $MC^{reweight} B_s \rightarrow D_s \pi$ $(1.17 \pm 0.01 \pm 0.03)$

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

L_reco_L_tru xy	uth: PV	
	├── - - 	 (
$ \begin{array}{l} \mathbf{MC^{reweight} \ B \rightarrow D^{-} \pi^{+}} \\ (1.03 \pm 0.02 \pm 0.01) \end{array} $	⊢ ⊶ −	I (
$\begin{array}{l} \textbf{MC}^{\text{reweight}} \; \textbf{B} \rightarrow \textbf{J}/\psi \; \textbf{K}^{*} \\ (\; \textit{1.01} \; \pm \; \textit{0.02} \; \pm \; \textit{0.01} \;) \end{array}$	┝╍┥	 (
$ \begin{array}{l} \textbf{MC}^{\text{reweight}} \textbf{B} \rightarrow \textbf{J}/\psi \textbf{K}^{*} \\ (1.02 \pm 0.02 \pm 0.02) \end{array} $	H <mark>⊖H</mark>	 (
$\begin{array}{l} \textbf{MC}^{\text{reweight}} \; \textbf{B}_{s} \rightarrow \textbf{D}_{s} \pi \\ (\; 1.02 \; \pm 0.01 \; \pm 0.01 \;) \end{array}$	┣┫	 (
	95 1 105 11	5

L _{xy} ^{reco} -L _{xy} ^{tr}	uth: SV
$ \begin{array}{l} \mathbf{MC}^{reweight} \ \mathbf{B} \rightarrow \mathbf{D}^{\circ} \ \pi^{+} \\ (1.2 \ \pm 0.02 \ \pm 0.2 \) \end{array} $	├───
MC ^{reweight} B \rightarrow D ⁻ π^+ (1.19 ± 0.02 ± 0.02)	Θ
$\begin{array}{l} \textbf{MC}^{\text{reweight}} \textbf{B} \rightarrow \textbf{J}/\psi \textbf{K}^{\text{+}} \\ (\ 1.24 \ \pm 0.03 \ \pm 0.01 \) \end{array}$	Φ
$\begin{array}{l} \textbf{MC}^{\text{reweight}} \textbf{B} \rightarrow \textbf{J}/\psi \textbf{K}^{*} \\ (\ 1.14 \ \pm 0.02 \ \pm 0.01 \) \end{array}$	Ø
$ \mathbf{MC}^{reweight} \mathbf{B}_{s} \rightarrow \mathbf{D}_{s} \pi $ $ (1.22 \pm 0.01 \pm 0.01) $	Ħ
0.4 0.6 0.8	1 1.2 1.4

•Amazingly stable and consistent with X, Y and Z!

•Variations well within 10%

SV Pull Strategy

- "N-1" d_0 and L_{xy} validate montecarlo
- Dependencies studied in "N-1" d₀/L_{xy} are mostly due to choice of variables (to be confirmed by last bullet!)
- MC predicts a SV scale factor of 1.2±10%
- Before blessing: dependencies of MC scale factor