EbE Vertexing for Mixing

Alex For the LBLB group

Outline

- Current status
 - What was used for the mixing results
 - What is the current understanding of Ebe
- Plans for improvements
 - How can we improve?

Current status

- EbE: itearative track selection/pruning algorithm to provide an unbiased estimate of the PV position on an Event-by-Event basis
- Hadronic analyses used a flat ~25um beamline!
- Possible improvements:
 - Move to "hourglass"
 - Move to EbE
 - EbE + Hourglass
 - One of the ½ leptonic analyses used this with
 fixed hourglass parameters 100

The tools

•Prompt peak

•V-truth

•V1-V2 •d₀/σ

$$\begin{split} L_{xy} &:= \vec{\Delta} \cdot \hat{P}_B \\ d_0^B &:= \left| \vec{\Delta} - \frac{P_B^2}{\vec{P}_B \cdot \vec{\Delta}} \vec{P}_B \right| \approx \vec{\Delta}^\perp \cdot \hat{P}_B \\ \hline \sigma_{L_{xy}} &= t \hat{\Delta} \Sigma_V^2 \hat{\Delta} \\ \sigma_{d_0^B} &= t \hat{\Delta}^\perp \Sigma_V^2 \hat{\Delta}^\perp \\ \hline \hat{\Delta} &= (x, y) \implies \hat{\Delta}^\perp = (y, -x) \end{split}$$

What do we know about EbE? • Unbiased estimator of PVTX

Reasonable (~5%) control of systematics

Mode	x scale	y scale	z scale	
$B^{\pm} \rightarrow \psi K^{\pm}$	1.327 ± 0.035	1.399 ± 0.035	1.375 ± 0.029	
$B^{\pm} \rightarrow D^0 \pi^{\pm}$	1.408 ± 0.030	1.398 ± 0.031	1.367 ± 0.29	
$B^0 \to D^{\pm} \pi^{\mp}$	1.426 ± 0.034	1.336 ± 0.029	1.288 ± 0.027	

	Transverse	Z	
Data (V ₁ -V ₂)	1.33±0.035	1.37±0.035	
MC (V ₁ -V ₂)	1.192±0.034	1.26±0.035	
MC (V-truth)	1.24±0.036	1.23±0.032	
J/y Prompt Peak	1.236±0.024	~ND~	
J/y d ₀ /s	1.176±0.019	~ND~	

Cross checks using I.P.(B)

Pull on Impact Parameter						
Mode	Beamline	Beamline		Event-by-Event	Event-by-Event	
	$\sigma = 25\mu$	z dependent σ		w/beam constraint	w/o beam constraint	
$B^{\pm} \rightarrow D^0$	π^{\pm} 1.297 ± 0.025	1.178 ± 0.039		1.202 ± 0.021	1.050 ± 0.025	
$B^0 \to D^{\pm} \sigma$	π^{\mp} 1.256 ± 0.026	1.118 ± 0.027		1.163 ± 0.020	1.046 ± 0.027	
			Som	ething funny	Scale factors	
Z	dep. Beamli	ne whe		en beamline is	work!	
improves pulls!		S!			B	

- L_{xy} involves three ingredients:
 - EbE
 - Secondary vertex
 - Beamline (in beamline constrained fits)

Relative PV/BV contribution to B/

- L_{xy} involves three ingredients:
 - EbE
 - Secondary vertex
 - Beamline (in beamline constrained fits)

	Not Beam Constrained		Beam Constrained		
	$\sigma_{ m d0}$	σ_{Lxy}	σ_{d0}	σ_{Lxy}	
PV	23	27	17	17	
SV	12	36	12	36	
Sum	27	45	21	43	

 D_0 and L_{xy} probe different regimes of σ_{d0}/σ_{Lxy}

...Improvements:

- PV pulls w BC ⇒ need to revisit modeling of beamline
- Difference of relative contributions of PV/SV to L_{xy} and $d_0 \Rightarrow$ need additional methods to study SV resolution

Hourglass parameters from DB Profiles

Time dependence of Hourglass parameters

Implementing DB access of time-dependent parameters

SV contribution

Moments to the rescue:

- •Example $B \rightarrow \psi K$
 - $\bullet Fit \; \psi \; vertex \; alone$
 - •Look at $d_0(K)$ wrt ψ vertex

•Can repeat this study with other multi-prong vertices (D⁺, D⁰ etc.). Result might depend on:

•Momentum

Vertex multiplicity

•Plenty of statistics to study all this

•Cross check the study on MC, after shimming L_{00} efficiency

...hence the plans for improvements!

A Prioritized List:

- 1. Understand beamline parameterization:
 - I. Is it modeled correctly
 - II. Is it measured correctly
 - \Rightarrow Include our best knowledge of it!
- 2. Are secondary vertex pulls ok?
 - I. Check with montecarlo truth
 - II. Use n-prong vertices (J/ ψ K, K $\pi\pi^{+/0}$, K $\pi\pi\pi^{+/0}$)
- 3. Do we understand the CTVMFT PV scale factor?
- (connected to 3.) investigate dependencies (Pt?, z?, multiplicity, η?)

Backup

What do we gain?

- 1. 15-20% In vertex resolution!
- 2. Better control of systematics (hard to evaluate)
- 3. Correct EbE resolution (if is not clear that it is correct now)

•Red arrow is the effect of 1. Only

Euphemism

•Point 2. Affects mostly the green area (tiny ?)

Point 3. Has an effect qualitatively similar to 1., but hard to evaluate

Hadronic analysis systematics

source	selected Δm_s scan points				
	0.0	5.0	10.0	15.0	20.0
$B_s \to D_s K$ level	0.019	0.024	0.030	0.037	0.047
dilution scale factors	0.143	0.168	0.205	0.254	0.314
dilution templates	0.119	0.147	0.178	0.211	0.246
fraction of Λ_b	0.014	0.009	0.009	0.011	0.012
Punzi term for σ_{ct}	0.009	0.008	0.022	0.033	0.030
dilution of $B \to DX$	0.025	0.001	0.000	0.000	0.001
σ _{ct} scale factor	0.000	0.024	0.061	0.090	0.144
usage of L00 in bias curve	0.001	0.001	0.001	0.001	0.001
Bs lifetime uncertainty	0.001	0.001	0.001	0.001	0.001
reweighted p_t spectrum	0.001	0.001	0.001	0.001	0.001
non-Gaussian tails in ct resol.	0.001	0.027	0.052	0.078	0.104
neglect B^0 in fit	0.039	0.036	0.033	0.031	0.028
effect of $\Delta\Gamma/\Gamma = 0.2$	0.028	0.028	0.028	0.028	0.028
Total systematic	0.195	0.232	0.289	0.357	0.443
Statistical	0.393	1.129	1.010	2.652	5.281