EbE Vertexing for Mixing

Alex For the LBLB group

Improved studies on pulls

- Increased sample's statistics
 - Full ~350 pb⁻¹
 - Working on including K3 π and ψK
- Tested the effect of run# dependent hourglass parameters
- Improved fit (core of pulls now defined as $\pm 2\sigma$)
- G3X refit: no difference in pulls

• Started work on SV pulls

The current situation is summarized in the next table... (same trends, slightly different numbers)

Extended x-checks

	$B \rightarrow D^0[\rightarrow \kappa \pi]\pi$					$B \rightarrow D^{+} [\rightarrow K \pi \pi] \pi$				
Beam constr.										
Hourglass from DB										
Exclude DB-less										
PV scale factor	1.0	1.38	1.38	1.38	1.38	1.0	1.38	1.38	1.38	1.38
d _o Beam (hourglass)	1.17	1.17	1.19	1.13	1.12	1.15	1.1	1.12	1.07	1.05
d _o EbE	1.33	1.07	1.18	1.17	1.15	1.30	1.11	1.15	1.14	1.13
d ₀ EbE (SV rescale)	1.24	1.02	1.10	1.10	1.09	1.26	1.06	1.09	1.08	1.07
X ₁ -X ₂	1.40	1.02				1.39	1.02			
Y ₁ -Y ₂	1.40	1.01				1.36	1.0			
Z ₁ - Z ₂	1.39	1.00				1.31	1.1			

How universal is the PV Scale Factor?

Scale factors From SecVtx code

Z dependency in $D\pi$ samples

•No indication of a structure (flat?)

•Smaller statistics, but main features should be visible!

•Final statistics will be ~2x

tracks dependency in $D\pi$ samples

4

tracks Pt>2 dependency in $D\pi$ samples

<Pt> dependency in $D\pi$ samples

Bottomline for PV scale factor

- The scale factor seems pretty universal
- No dependency on:
 - Z, #tracks, momentum
- Will improve statistics ($D^0 \rightarrow K \pi \pi \pi$, $B \rightarrow \psi K^{(*)}$
- Contribution to L_{xy} scale factor from the PV seems pretty consolidated at this point
- ...on to the Secondary Vertex!

Secondary Vertex

Scale factor from B decays

- •B $\rightarrow \psi K^{+}$
- $\mbox{-}Fit\ \psi$ to a single vertex
- •Measure L_{xy} wrt B vertex
- •Pull is a proxy for a "seconday vertex" pull!

First look at dependancies

Conclusions, so far

- A scale factor is needed for SV too
- Not too different from the PV sf
- Statistics of sample too small to get dependencies!
- Alternative samples:

– D⁺, B $\rightarrow \psi K^*$, tracks from primary

Moving along the plans for improvements!

- 1. Understand beamline parameterization:
 - I. Is it modeled correctly
 - II. Is it measured correctly
 - \Rightarrow Include our best knowledge of it!
- 2. Are secondary vertex pulls ok?
 - I. Check with montecarlo truth
 - II. Use n-prong vertices (J/ ψ K, K $\pi\pi^{+/0}$, K $\pi\pi\pi^{+/0}$)
- 3. Investigate dependencies (Pt, z,multiplicity, η) with full statistics

Backup

Outline

- Current status
 - What was used for the mixing results
 - What is the current understanding of Ebe
- Plans for improvements
 - How can we improve?

Current status

- EbE: itearative track selection/pruning algorithm to provide an unbiased estimate of the PV position on an Event-by-Event basis
- Hadronic analyses used a flat ~25um beamline!
- Possible improvements:
 - Move to "hourglass"
 - Move to EbE
 - EbE + Hourglass
 - One of the ½ leptonic analyses used this with
 fixed hourglass parameters 100

What do we know about EbE? • Unbiased estimator of PVTX

Reasonable (~5%) control of systematics

Mode	x scale	y scale	z scale	
$B^{\pm} \rightarrow \psi K^{\pm}$	1.327 ± 0.035	1.399 ± 0.035	1.375 ± 0.029	
$B^{\pm} \rightarrow D^0 \pi^{\pm}$	1.408 ± 0.030	1.398 ± 0.031	1.367 ± 0.29	
$B^0 \to D^{\pm} \pi^{\mp}$	1.426 ± 0.034	1.336 ± 0.029	1.288 ± 0.027	

	Transverse	Z
Data (V ₁ -V ₂)	1.33±0.035	1.37±0.035
MC (V ₁ -V ₂)	1.192±0.034	1.26±0.035
MC (V-truth)	1.24±0.036	1.23±0.032
J/y Prompt Peak	1.236±0.024	~ND~
J/y d ₀ /s	1.176±0.019	~ND~

Cross checks using I.P.(B)

Pull on Impact Parameter							
Mode	Beamline	Beamline		Event-by-Event	Event-by-Event		
	$\sigma = 25\mu$	z dependent σ		w/beam constraint	w/o beam constraint		
$B^{\pm} \rightarrow D^0$	π^{\pm} 1.297 ± 0.025	1.178 ± 0.039		1.202 ± 0.021	1.050 ± 0.025		
$B^0 \to D^{\pm} \sigma$	π^{\mp} 1.256 ± 0.026	1.118 ± 0.027		1.163 ± 0.020	1.046 ± 0.027		
			Som	ething funny	Scale factors		
Z dep. Beamline improves pulls!		when beamline is		work!			
		S!			B		

- L_{xy} involves three ingredients:
 - EbE
 - Secondary vertex
 - Beamline (in beamline constrained fits)

Time dependence of Hourglass parameters

Implementing DB access of time-dependent parameters

What do we gain?

- 1. 15-20% In vertex resolution!
- 2. Better control of systematics (hard to evaluate)
- 3. Correct EbE resolution (if is not clear that it is correct now)

•Red arrow is the effect of 1. Only

Euphemism

•Point 2. Affects mostly the green area (tiny ?)

Point 3. Has an effect qualitatively similar to 1., but hard to evaluate

Hadronic analysis systematics

source	selected Δm_s scan points						
	0.0	5.0	10.0	15.0	20.0		
$B_s \to D_s K$ level	0.019	0.024	0.030	0.037	0.047		
dilution scale factors	0.143	0.168	0.205	0.254	0.314		
dilution templates	0.119	0.147	0.178	0.211	0.246		
fraction of Λ_b	0.014	0.009	0.009	0.011	0.012		
Punzi term for σ_{ct}	0.009	0.008	0.022	0.033	0.030		
dilution of $B \to DX$	0.025	0.001	0.000	0.000	0.001		
σ _{ct} scale factor	0.000	0.024	0.061	0.090	0.144		
usage of L00 in bias curve	0.001	0.001	0.001	0.001	0.001		
Bs lifetime uncertainty	0.001	0.001	0.001	0.001	0.001		
reweighted p_t spectrum	0.001	0.001	0.001	0.001	0.001		
non-Gaussian tails in ct resol.	0.001	0.027	0.052	0.078	0.104		
neglect B^0 in fit	0.039	0.036	0.033	0.031	0.028		
effect of $\Delta\Gamma/\Gamma = 0.2$	0.028	0.028	0.028	0.028	0.028		
Total systematic	0.195	0.232	0.289	0.357	0.443		
Statistical	0.393	1.129	1.010	2.652	5.281		

Hourglass parameters from DB Profiles

SV contribution

Moments to the rescue:

- •Example $B \rightarrow \psi K$
 - $\bullet Fit \; \psi \; vertex \; alone$
 - •Look at $d_0(K)$ wrt ψ vertex

•Can repeat this study with other multi-prong vertices (D⁺, D⁰ etc.). Result might depend on:

•Momentum

Vertex multiplicity

•Plenty of statistics to study all this

•Cross check the study on MC, after shimming L_{00} efficiency

-2 -1

0

-3

2 3

Z aliced X1-X2 Pulls (0.000000 < a < 10.200000) Sideband Su

400

350

300

250

200

150

100

50

5.496/8

0.7035

 1299 ± 26.9

 $\textbf{1.36} \pm \textbf{0.03}$

-0.04261 ± 0.03130

Prot

рØ

p1

p2

2 3 4

1

-2 -1 0

-3 -2 -1 0 1 2 3

1

2

Prob

рŰ

p1

p2

3 4 5

10.61/9

0.3032

 $\textbf{123.3} \pm \textbf{8.2}$

 1.431 ± 0.097

-0.02338 ± 0.10285

4 5

-2 -1 0

-3

Z aliced Y1-Y2 Pulls (40.793999 < x < 51.000000) Sideband

50

40

30

20

10

-5 -4 80

60

40

20

-5 -4

50

-4

4 5

-3 -2 -1 0 1 2 3

40

20 04

-5

-4

2 3 4

1

-3 -2 -1 0

Z aliced Z1-Z2 Pulls (-30.600000 < x < -20.4000001 Sidebard Subt

120

13.79/11

 400.2 ± 14.4

 1.518 ± 0.051

-0.04988 ± 0.05823

p1

p2

0.245

Z aliced Z1-Z2 Pulls (-10.200000 < x < 0.000000) Sideband Subtracted

350

300

250

200

150

0

-5 -4

6.961/9

 1144 ± 24.4

 1.327 ± 0.027

-0.0529 ± 0.0304

0.6412

Prob

рØ

p1

p2

1 2 3 4

-3 -2 -1 0

-2 -1 0

1 2 3 4

-5 -4 -3

Planned Improvements:

 PV pulls w Beam Constraint ⇒ need to revisit modeling of beamline

- Use of run dependent hourglass parameters

 Hints of difference in the relative contributions of PV/SV to L_{xy} and d₀ ⇒ need additional methods to study SV resolution

Where are we?

The tools

Relative PV/BV contribution to d_0 and L_{xy} pulls

$$\boldsymbol{s}_{L_{xy}}^{2} = {}^{t} \boldsymbol{w} \boldsymbol{s}_{PV}^{2} \boldsymbol{w} + {}^{t} \boldsymbol{w} \boldsymbol{s}_{SV}^{2} \boldsymbol{w}$$

$$\boldsymbol{s}_{d_{0}}^{2} = {}^{t} \boldsymbol{w}^{\perp} \boldsymbol{s}_{PV}^{2} \boldsymbol{w}^{\perp} + {}^{t} \boldsymbol{w}^{\perp} \boldsymbol{s}_{SV}^{2} \boldsymbol{w}^{\perp}$$

$$\boldsymbol{w} = (x, y)$$

$$\boldsymbol{w}^{\perp} = (y, -x)$$

$$\boldsymbol{w}^{\perp} = (y, -x)$$

•PV and BV are linear combinations of the same covariances ($\sigma_{\text{PV}},\,\sigma_{\text{SV}}$), with different coefficients

 $\bullet L_{xy}$ sensitive to the major axis of σ_{SV}

•Relative weight of PV and SV covariances different for L_{xv} and d₀

•Look at:

$$\sqrt{\frac{t^{*} w \mathbf{S}_{PV}^{2} w}{\mathbf{S}_{L_{xy}}^{2}}} \quad \sqrt{\frac{t^{*} w^{\perp} \mathbf{S}_{PV}^{2} w^{\perp}}{\mathbf{S}_{d_{0}}^{2}}} \\
\sqrt{\frac{t^{*} w \mathbf{S}_{SV}^{2} w}{\mathbf{S}_{L_{xy}}^{2}}} \quad \sqrt{\frac{t^{*} w^{\perp} \mathbf{S}_{SV}^{2} w^{\perp}}{\mathbf{S}_{d_{0}}^{2}}}$$

Note: the two L_{xy} (or d₀) pieces do not linearly add to 1!

Relative PV/BV contribution to IP and Lxy pulls

PV contribution to the L_{xv} error

SV contribution to the L_{xv} error

SV contribution to the d₀ error

 Not Beam Constrained
 Beam constrained
 Beam constrained with rundep. hourglass

В

Bottomline:

- SV and PV enter very differently in L_{xy} and d_0
- Relative contribution depends strongly on PV and SV scales
- Beam constraint squeezes the PV resolution significantly. Becomes second order on L_{xy}!
- We are in a regime where the SV scale factor is critical!
- ... now let's get more quantitative!