Measurement of the B_s Meson Oscillation Frequency with CDF II

May 11th 2006

Synopsis

- Introduction
- Quick reminder on the ingredients
- A sound statistical approach
- The D0 result
 - Sample and scans
 - Evidence of a signal?
- The CDF result
 - Samples
 - Results (subsamples & combined)
 - Implications on CKM/BSM
- What's next?
- Conclusions

Two months ago...

What happened in the last two months?

- D0 came out with a result based on 1fb⁻¹ (Moriond)
- CDF shortly afterwards released its latest greatest result (but not the last word) on 1fb⁻¹
- Bottom line?
 - Evidence of a mixing 'signal'
 - Not enough statistical power for 'observation' (5σ)

- If signal is there $\Delta m_s = 17.33^{+0.42}_{-0.21} \pm 0.07 (\text{syst}) \text{ps}^{-1}$

• I will focus mostly on how to read these results and what one should take out of them

Why so much interest around Δm_s ?

• V_{td} is derived from mixing effects

• QCD uncertainty is factored out in this case resorting to the relative Bs/Bd mixing rate (V_{td}/V_{ts})

• Beyond the SM physics could enter in loops!

Amplitude Scan: introduction

- Mixing amplitude fitted for each (fixed) value of Δm
- On average every Δm value (except the true Δm) will be 0
- "sensitivity" defined for the average experiment [mean 0]
- The actual experiment will have statistical fluctuations
- Actual limit for the actual experiment defined by the systematic band centered at the measured asymmetry
- Combining experiments as easy as averaging points!

Is this an effective tool to search for a signal?

Mixing in the real world

One Slide Summary: Mixing Measurements

Signals

Hadronic Lifetime Results

Mode	Lifetime [ps] (stat. only)
$B^0 \rightarrow D^- \pi^+$	1.508 ± 0.017
$B^{-} \rightarrow D^{0} \pi^{-}$	1.638 ± 0.017
$B_{s} \rightarrow D_{s} \pi(\phi \pi)$	1.538 ± 0.040

- World Average:
- B^0 1.534 \pm 0.013 ps⁻¹
- B⁺ 1.653 \pm 0.014 ps⁻¹
- B_{s} 1.469 ± 0.059 ps⁻¹

Excellent agreement!

ID_s Lifetime Results

	Lifetime (ps)
Bs:Ds $\rightarrow \phi \pi$	1.51±0.04 stat. only
Bs:Ds → K*K	1.38±0.07 stat. only
Bs:Ds $\rightarrow \pi\pi\pi$	1.40±0.09 stat. only
Bs combined	1.48±0.03 stat. only

- lifetimes measured on first 355 pb⁻¹
- compare to World Average: Bs: (1.469±0.059) ps

$$ct = \frac{L_{xy} m_B}{P_t^{VIS}} \left\langle \frac{P_t^{VIS}}{P_T} \right\rangle_{MC} \rightarrow \boxed{\frac{\sigma_{ct}}{ct} = \frac{\sigma_{L_{xy}}}{L_{xy}} \oplus \frac{\sigma_{P_t}}{P_t} \otimes \frac{\sigma_K}{K}}{P_t}}_{\mathbf{B}_{s}} \qquad \mathbf{D}_{s}$$

Flavor Tagging

Several methods, none is perfect !!!

Unbinned Likelihood Am_d Fits

- B_d/B^+ samples used as guinea pigs:
- Validate fit implementation
- Characterize taggers
- 1. Semileptonic and hadronic samples are fit separately
- 2. A is fixed to 1
- **3.** ϵ ,**D**, Δ m_d are measured!

 $\begin{array}{ll} \mbox{hadronic:} & \Delta m_d = 0.536 \pm 0.028 \mbox{ (stat)} \pm 0.006 \mbox{ (syst)} \mbox{ ps}^{-1} \\ \mbox{semileptonic:} & \Delta m_d = 0.509 \pm 0.010 \mbox{ (stat)} \pm 0.016 \mbox{ (syst)} \mbox{ ps}^{-1} \\ \mbox{world average:} & \Delta m_d = 0.507 \pm 0.004 \mbox{ ps}^{-1} \end{array}$

semileptonic, ID⁻, muon tag

B_s Mixing: tagging performance

Tagger "calibration":

- 1. Tune tagger (selection cuts, algorithm details)
- 2. Measure performance (ϵ , D) on control samples

CDF: ~5% of the Events are effectively used!

D0: ~2.5% of the events are effectively used!

Amplitude Scan: signal?

- B_d mixing can be searched for too
- Signal is clearly visible both by CDF and D0
- Detailed features of the scan when signal is present can vary from one experiment to the other
- What happens when you see a signal?
 - See a peak
 - Details of the peak depend on the experiments properties
 - How do you define the significance of a signal?

Remember: this all becomes an academic exercise when statistics is large enough!

Amplitude Scan do and don't

- Amplitude scan is helpful to:
 - Set a Δm limit
 - Combine experimental results
- It is not easy to measure mixing from it
- How does an evidence of a signal look like?
- What procedure should one follow if aiming at a measurement?
- These questions must be asked before performing the analysis!
- Otherwise lack of coverage is the punishment!

Remember:

- Not to confuse the individual significance of each A measurement with the overall significance of the 'feature'
- 'Discovery threshold' is an arbitrary cut on the probability for nonsignal to produce the same features: nothing to do in general with how significant the value of a given parameter you measure is!

Neyman-Pearson

- Several ways of using your data
 - set a lower limit? Set an upper limit?
 - Obtain a two-sided bound?
 - Measure Δms ?
- We want to discern between
 - H₀ = no signal
 - H_1 = mixing at a certain Δm value
- Neyman-Pearson test:
 - Pick an observable ξ , e.g.:
 - Significance of the highest peak in A-scan
 - Likelihood ratio (UMP! Neyman-Pearson lemma!)
 - Derive: $P(\xi|H_0) P(\xi|H_1)$
 - Define:
 - Bands in ξ for rejecting H_0/H_1
 - \Rightarrow Desired detection & false alarm probabilities
 - Open the box!
- Dangerous things:
 - Defining procedure (observable, probability thresholds and bands) after looking at your sample

Amplitude

- Being confused about the procedure
- Switch from one way of using data to another (limit vs measurement)

CDFs Choice of Procedure

- Decided upon before un-blinding 1fb⁻¹ of data
 P-value: probability that observed effect is due to background (false alarm): 1% (should be ~6·10⁻⁷ [5σ] for a 'discovery')
- to be estimated using method defined in the next slide
- no search window to be used

Significance

- $\Delta \log(L) = \log[L(A=1) / L(A=0)] \rightarrow \text{signal at likelihood's deepest "dip"}$
- more powerful discriminant than $A/\sigma(A)$
- probability of random tag fluctuations evaluated on data
 (with randomized tags) → checked that toy Monte Carlo gives same answer

B_s Mixing: D0 Result

Hep-ex/0603029

• 26700 ID_s candidates

•εD²~2.5%

 Δm_s > 14.8 ps⁻¹ @ 95% CL Sensitivity: 14.1 ps⁻¹

B_s Mixing: D0 Result

Very exciting: is this a mixing signal???

Pros	Cons
∆m≈19	∆m≈19
A/σ _A ≈2.5	(A-1) /σ _A ≈1.6
L has a nice dip	but shallow
P(BCKGND)~5%	P(SIGNAL)~15%

D0 PRL offers a set of possible choices:

- Setting a limit?
 - upper?
 - Lower?
 - Two-sided?

• Default choice seems to be 'two sided limit'

B. Mixing: CDF semileptonic

 $B_{*} \rightarrow I \: D_{*} \: X$

http://www-cdf.fnal.gov/physics/new/bottom/060406.blessed-Bsmix/

CDF Semileptonic Scan: Period 1

CDF Semileptonic Scan: Period 2

CDF Semileptonic Scan: Period 3

B_s Mixing: CDF hadronic

Amplitude Scan: Hadronic Period 1

Amplitude Scan: Hadronic Period 2

Amplitude Scan: Hadronic Period 3

B_s Mixing: combined CDF result

http://www-cdf.fnal.gov/physics/new/bottom/060406.blessed-Bsmix/

Likelihood Ratio

combined likelihoods from hadronic and semileptonic channels

∆m_s in [17.00, 17.91] ps⁻¹ at 90% CL ∆m_s in [16.94, 17.97] ps⁻¹ at 95% CL the measurement is already very precise! (at 2.5% level)

Why the undershoot?

 Peculiarity of our ct-dependent efficiency!

• Does not matter if signal is not present (i.e. the only case where you use an amplitude scan!)

• CDFs amplitude scan can still be combined with the rest of the world for combined limit

Systematic Uncertainties I

- related to absolute value of amplitude, relevant only when setting limits
 - cancel in A/ σ_A , folded in confidence calculation for observation
 - systematic uncertainties are very small compared to statistical
Systematic Uncertainties II: Δm_s

- systematic uncertainties from fit model evaluated on toy Monte Carlo
- have negligible impact
- relevant systematic unc. from lifetime scale

	Syst. Unc
Fitting Model	< 0.01ps ⁻¹
SVX Alignment	0.04 ps ⁻¹
Track Fit Bias	0.05 ps ⁻¹
PV bias from tagging	0.02 ps ⁻¹
Total	0.07 ps ⁻¹

All relevant systematic uncertainties are common between hadronic and semileptonic samples

Δm_s and V_{td}

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{Bs}}{m_{Bd}} \xi^2 \frac{\left|V_{ts}\right|^2}{\left|V_{td}\right|^2}$$

- inputs:
 - \rightarrow m(B⁰)/m(B_s) = 0.9830 (PDG 2006)
 - \rightarrow ξ = 1.21 ^{+0.47}_{-0.35} (M. Okamoto, hep-lat/0510113)
 - $\rightarrow \Delta m_d = 0.507 \pm 0.005 (PDG 2006)$

 $|V_{td}| / |V_{ts}| = 0.208 + 0.008 - 0.007$ (stat + syst)

• compare to Belle $b \rightarrow s\gamma$ (hep-ex/050679): $|V_{td}| / |V_{ts}| = 0.199 + 0.026 - 0.025$ (stat) + 0.018 (syst)

Δm_s and V_{td}

<u>∆m_s & CKM</u>

<u>∆ms from Tevatron & BSM Limits</u>

 $A_{SM} \to A_{SM} \left(1 + h_s e^{i\sigma_s} \right)$

What's next?

- TeVatron samples will be frozen until summer – at the least
- Experiments will refine their analyses:
 - DO, [my guesses on] possible improvements:
 - More D_s modes
 - Include fully reconstructed hadronic decays
 - Improve taggers
 - CDF:
 - Improve tagger usage (we have been very draconian this round on what to/ not to use)
 - Additional 'almost fully reconstructed' modes

B_s Mixing: Perspectives

Exciting times ahead:

- 'Discovery' could be close
- B_s result has become an important complementary addition to the CKM mapping!
- ..soon we will improve our mixing sensitivity and move on to new frontiers:

$$B_{s} \rightarrow \psi \phi, B_{s} \rightarrow D_{s} K...$$

Backup Slides

CDF Semileptonic Scan: Combined

Neyman-Pearson

- Several ways of using your data
 - set a lower limit? Set an upper limit?
 - Obtain a two-sided bound?
 - Measure Δms ?
- We want to discern between
 - H₀ = no signal
 - $H_1 = mixing$ at a certain Δm value
- Neyman-Pearson test:
 - Pick an observable ξ, e.g.:
 - Significance of the highest peak in A-scan
 - Likelihood ratio (UMP! Neyman-Pearson lemma!)
 - Derive: $P(\xi|H_0) P(\xi|H_1)$
 - Define:
 - Bands in ξ for rejecting H_0/H_1
 - \Rightarrow Desired detection & false alarm probabilities
 - Open the box!
- Dangerous things:
 - Defining procedure (observable, probability thresholds and bands) after looking at your sample
 - Being confused about the procedure
 - Switch from one way of using data to another (limit vs measurement)

Mixing & Fourier Transforms

Analogy: searching for a peak

- Familiar problem with analogous issues:
 - Unknown mass (Δm)
 - Some knowledge of width
- Peak hunting is dangerous:
 - Easy to bias yourself from:
 - prior knowledge
 - Statistical fluctuations
 - Sensitivity depends on:
 - Binning (can go unbinned though, if mass model is robust)
 - Search window
- m can be measured pretty well on a statistical fluctuation!

Proper time resolution

Semileptonic modes: momentum uncertainty

Fully reconstructed: Lxy uncertainty \rightarrow improve reconstruction

Samples of B_s Decays

Semileptonic Samples: D_s⁻ I⁺ X

~53 K events

 $m(ID_{s}^{-})$ distribution

Signal Yield Summary: Semileptonic

	muon	electron
$ID_s: D_s \rightarrow \phi \pi$	~ 24 K	~ 8 K
ID _s : D _s → K*K	~ 8 K	~ 3 K
$ID_s: D_s \rightarrow \pi\pi\pi$	~ 7.5 K	~ 2.5 K

ID ⁰ : D ⁰ \rightarrow K π	~ 400 K	~ 140 K
ID^{*} : $D^{0} \rightarrow K\pi$	~ 54 K	~ 21 K
ID ⁻ : D ⁻ \rightarrow K $\pi\pi$	~ 220 K	~ 80 K

B Lifetime Measurements

"Classic" B Lifetime Measurement

-0.1

0.0

0.1

 background p_{bkgd}(t) modeled from sidebands

0.3

ct, cm

0.2

Hadronic Lifetime Measurement

Hadronic Lifetime Results

Mode	Lifetime [ps] (stat. only)
B ⁰ →D ⁻ π ⁺	1.508 ± 0.017
B ⁻ →D ⁰ π ⁻	1.638 ± 0.017
$B_s \rightarrow D_s \pi(\phi \pi)$	1.538 ± 0.040

- World Average:
- B^0 1.534 \pm 0.013 ps⁻¹
- B⁺ 1.653 \pm 0.014 ps⁻¹
- B_s 1.469 \pm 0.059 ps⁻¹

Excellent agreement!

Semileptonic Lifetime Measurement

CDF Run II Monte Carlo

 $4.9 < m_{ID_a} \le 5.1 \text{ GeV/c}^2$

----- $4.3 < m_{ID_2} \le 4.5 \text{ GeV/c}^2$

2.9 < $m_{ID_x} \le 3.1 \text{ GeV/c}^2$

0.6

0.8

all

0.4

0.3

0.2

0.1

0.4

probability density

 neutrino momentum not reconstructed

$$K = \frac{p_T(lD)}{p_T(B)} \cdot \frac{L(B)}{L(lD)} \sqrt{\frac{p_T(B)}{p_T(B)}}$$

correct for neutrino on average

L ≈ 1 fb⁻¹

CDF Run II Preliminary

🛶 Data

– Fit

Ż

🧱 B, Signal

Physics Background

Combinatorial + False Lepton

lepton-D mass [GeV/c²]

Lepton SVT Track

 $B_{\epsilon} \rightarrow I D_{\epsilon} X$

3000

2000

1000

0

Candidates per 18 MeV/c²

ID_s ct* Projections

Semileptonic Lifetime Results

	Lifetime (ps)
Bs: Ds $\rightarrow \phi \pi$	1.51±0.04 stat. only
Bs: Ds \rightarrow K*K	1.38±0.07 stat. only
Bs: Ds $\rightarrow \pi\pi\pi$	1.40±0.09 stat. only
Bs combined	1.48±0.03 stat. only

- lifetimes measured on first 355 pb⁻¹
- compare to World Average: B_s : (1.469±0.059) ps

Proper Time Resolution

Proper Time Resolution

Reminder, measurement $\frac{(\Delta m_s \sigma_t)^2}{2}$ $N\epsilon D^2$ Ssignificance: Signif = B significant effect 1.5 A(t) 1.0 fitter has to correctly account for it 0.5 0.0 lifetime measurements not very -0.5 sensitive to resolution -1.0 -1.5¹ 2 3 a dedicated calibration is needed! Decay Time [ps]

Calibrating the Proper Time Resolution

- utilize large prompt charm cross section
- construct "Bs-like" topologies of prompt D_s⁻ + prompt track
- calibrate ct resolution by fitting for "lifetime" of "Bs-like" objects

B_s Proper Time Resolution

- event by event determination of primary vertex position used
- average uncertainty
 - $\sim 26 \ \mu m$
- this information is used per candidate in the likelihood fit

Layer "00"

- layer of silicon placed directly on beryllium beam pipe
- radial displacement from beam ~1.5 cm
- additional impact parameter resolution, radiation hardness

Flavor Tagging

Tagging the B Production Flavor

- use a combined same side and opposite side tag!
- use muon, electron tagging, jet charge on opposite side
- jet selection algorithms: vertex, jet probability and highest $\ensuremath{p_{\text{T}}}$
- particle ID based kaon tag on same side

Parametrizing Tagger Decisions

• use characteristics of tags themselves to increase their tagging power, example: muon tags

- tune taggers and parametrize event specific dilution
- technique in data works with opposite side tags

Same Side Kaon Tags

- exploit b quark fragmentation signatures in event
- B⁰/B⁺ likely to have a π⁻/ π nearby
- B_s⁰ likely to have a K⁺
- use TOF and COT dE/dX info.
 to separate pions from kaons
- problem: calibration using only B⁰ mixing will not work
- tune Monte Carlo simulation to reproduce B⁰, B⁻ distributions, then apply directly to B⁰_s

Time Of Flight System

- timing resolution ~100 ps ! resolves kaons from pions up to p ~ 1.5 GeV/ c
- TOF provides most of the Particle ID power for SSKT

Calibrating SSKT

- Analogous to transfer scale factor in Opposite Side Tags
- Check dilution in light B meson decays

Data/MC agreement is the largest systematic uncertainty ! O(8%)
The Data

Hadronic Scan: Combined

Combined Amplitude Scan

Combined Amplitude Scan

Likelihood Significance

- randomize tags 50 000 times in data, find maximum $\Delta log(LR)$
- in 228 experiments, $\Delta log(LR) \ge 6.06$
- probability of fake from random tags = 0.5% \Rightarrow measure $\Delta m_s!$

Does the MC bias the answer?

- efficiency function is derived from Monte Carlo
- the Monte Carlo is derived with an input lifetime
- does the input lifetime bias the fit outcome?
- test: fit many Monte Carlos CDF Run II Monte Carlo with various input lifetimes $560 = B^* \rightarrow \overline{D}^0 \pi^*$: N
- derive efficiency function using one lifetime (500 µm)
- compare fit result to input lifetime
- observe no bias for ±50 µm
- measurement stat error ~7µr

Semileptonic Lifetime Fits (Winter '05)

- B⁰, B⁺ lifetimes within 20 μm of world average values
- combined ID_s⁻ lifetime fit result: 445 \pm 9.5 (stat) μ m
- world average value: $438 \pm 17 \ \mu m$

"Prompt" Charm Background

- due to fake leptons, reconstruct some amount of prompt charm (D⁻, D⁰, D^{*-}) as B signal (in D mass signal region)
- can not disentangle from signal in any variable
- need to account for in lifetime, mixing fits
- extract shape from wrong-sign I^{-D} sample, use in fit

m(ID) fits

- signal distribution from Monte Carlo
 - distribution for "fake" leptons from data
- physics background distribution from MC
- fit linear combination to sideband subtracted data to extract fractions

Cross-Talk

- problem:
- ID⁻, ID⁰ are a mixture of B⁺, B⁰
- when fitting for lifetimes and mixing amplitude, account for this effect in fitter

I.K.F1 goes to backup Ivan K Furic, 3/14/2005

Tagger Calibration

- taggers are parametrized in I+track sample
- kinematically different from final ($D_s \pi$, $I+D_s^-$)
- final tagger calibration:
- perform B⁰ mixing fit in hadronic and semi-leptonic sample
- use per-event dilution, extract tagger scale factor:
- $p \sim \frac{1}{2} [1 \S S_D D_i \cos(\Delta m_D t)]$
- use per-event corrected dilutions in Δ m_s fit
- for hadronic sample, final calibration in D'^0 π , J/ ψ K(*)
- for semileptonic sample, final calibration in D^{-/O} I, D^{*-} I

I.K.F2

I.K.F2 move all this to backup Ivan K Furic, 3/14/2005

I.K.F3

<u>∆ m_d Fits</u>

hadronic: $\Delta m_d = 0.503 \pm 0.063$ (stat) ± 0.015 (syst) ps⁻¹ semileptonic: $\Delta m_d = 0.497 \pm 0.028$ (stat) ± 0.015 (syst) ps⁻¹

Slide 84

I.K.F3 unbinned likelihood fit

simultaneously measure

tagger performance

delta md Ivan K Furic, 3/14/2005

Kaon Tagging

- no straight way to determine tagger dilution from data unless B_s mixing is observed
- but we need to know the dilution to set the limit
- must use MC to measure dilution
- tune MC on B^0 , B^+
- predict B_s

Calibrating Opposite Side Tags

- Statistical Power of the tag: εD²
 - Tagging efficiency (ϵ)
 - Tagging dilution (D = 1-2w)
 - w = mistag rate
- "Binned Tagger"
 - Tag1: ϵ_1 =50%, D₁ = 0.5
 - Tag2: ϵ_2 =50%, D₂ = 0.1
 - $<D> = (D_1 + D_2)/2 = 0.3$
 - $-.<D^2>=0.36$
- Dividing events into different classes based on tagging power improves εD²
- Calibration the tagger performance requires high statistics

- inclusive B →track+lepton
- 1.4 M events of flavor specific B

Non-Gaussian Tails

- amplitude corrected for effects of non-Gaussian tails
- correction derived from toy Monte Carlo, tuned to reproduce data

Lifetime Measurement: Semileptonic Subsample

- in addition to SVT bias, correct for missing energy (Kfactor)
- bin K-factor in I+D invariant mass to obtain narrow Kfactor distributions

Calibrating SSKT (1)

- use combined PID likelihood, select most "kaon-like" track as tagging track
- parametrize dilution based on maximum PID likelihood value
- verify kinematic distributions (p_T, tagging track p_T, multiplicity, isolation) of light B mesons in Pythia simulation
- verify particle ID simulation
- test for dependences on:
 - fragmentation model
 - bb production mechanisms
 - detector/PID resolution
 - multiple interactions
 - pid content around B meson
 - data/MC agreement

Final test: cross-check tagging power against high statistics light B decays

The Method

- We are looking for a periodic signal: Fourier space is the natural tool
 - Moser and Roussarie already mentioned this!
 - They use it to derive the most useful properties of A-scan
 - Amplitude approach is approximately equivalent to the Fourier transform

Amplitude from scan ↔ Re[Fourier]

- Aim: move to Fourier transform based analysis
 - Computationally lighter
 - As powerful as A-scan
 - As is, no need *in principle* for measurements of D, ϵ etc. (however these ingredients add information and tighten the limit)
 - Will provide an alternate path to the A-scan result!

Dilution weighted transform

- Discrete Fourier transform definition
 - Given N measurements $\{t_j\} \rightarrow \frac{1}{g(\omega)} = \sum_{k=1}^{N} D_k e^{-i\omega t_k}$
- Properties:
 - A particular application of
 - Average: $\langle g(\omega) \rangle = N \langle D \rangle f(\omega)$

(f(t) is the parent distribution of $\{t_j\}$)

- Corresponds to dilution-weighted Likelihood approach
- Errors computed from data:

 $\sigma^2(\operatorname{Re} g(\omega)) \approx \frac{N}{2} \left(\left\langle D^2 \right\rangle + o\left(\frac{1}{N}\right) \right)$

 $g(\omega) = \sum_{k=1}^{\infty} w_k e^{-i\omega t_k} \quad (\text{CDF8054})$

• NB: Errors can be calculated directly from the data!

•
$$\Delta(\omega) \equiv g_{\text{UnMix}}(\omega) - g_{\text{Mix}}(\omega)$$
 behaves "as you'd expect"

• While Δ and its uncertainty are fully data-driven, predicted Δ requires exactly the same ingredients as the amplitude scan fit

Properties of Δ ...

- **Re**[∆]
 - a) contains information equivalent to the standard amplitude scan
 - b) (Amplitude scan)≈Re[∆]
- Re[F] and $\sigma_{\text{Re[F]}}$ can be computed directly from data!
- b) \Rightarrow Sensitivity is exactly:

$$\frac{\Delta(\omega = \Delta m_s)}{\sigma_{\Delta}} = \sqrt{N\varepsilon \langle D \rangle^2} \sqrt{\frac{S}{S+B}} e^{-\Delta m^2 \sigma_{ct}^2/2} \sqrt{1 + \frac{\sigma_D^2}{\langle D^2 \rangle}}$$

Can we reproduce the A-scan it self?

Toy Example

- 1000 toy events
- • $\Delta m_s = 18$
- S/B=2.
- $\varepsilon D_{signal}^2 = 1.6\%$
- $\varepsilon D_{back}^2 = 0.4\%$
- Background and signal parameterized according to standard analyses
- Histogrammed σ_{ct}
- Best knowledge on SF parameterization

"A-scan" a` la fourier

$$\frac{\Delta(\omega)}{\text{ored.}\Delta(\omega;\,\Delta m_s=\omega)}$$

No actual fit involved: this method allows to flexibly study systematics!

Measurement Sensitivity

- estimated from scan on "blinded" data (randomized tags)
- unusual situation one single measurement more sensitive than the world average knowledge!

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.