Probing the Standard Model Frontier with B Physics at CDF

Alessandro Cerri

BERKELEY LAD

Synopsis

- The Big Picture
- Why B physics at the TeVatron is a good bet
- Tools of the trade
 - CDF: detector and DAQ
 - SVT: the CDF key to B physics
- Selected examples
 - Hadronic Moments in b \rightarrow clv (V_{cb})
 - B_s Mixing (V_{td} and new physics)
- Perspectives
- Conclusions

Qualitative to Quantitative

Like other areas, CKM physics can now precisely probe the Standard Model

B physics: precision probe of SM and beyond!

TeVatron contribution is critical!

The Tevatron as a b factory

- B factories program extensive and very successful BUT limited to B_u,B_d
- Tevatron experiments can produce all b species: $B_u, B_d, B_s, B_c, B^{**}, \Lambda_b, \Xi_b$

•b production in pp collisions is so large ($\sim 300 \text{ Hz} @ 10^{32} \text{ cm}^{-2}$ Hz) that we could not even cope with writing it to tape!

Path to New Physics

- CKM measurements could hint to new physics through discrepancies with SM predictions. How do we get there?
- Design/improve the "tools of the trade"
 - Experimental (detector & techniques)
 - Theoretical (phenomenological devices)
- Measure uncharted properties at the boundaries of our knowledge
 - Masses
 - Lifetimes
 - Branching ratios
- Press further ahead and investigate beyond the boundaries:
 - Mixing
 - CP asymmetries

CDF and the TeVatron

Renewed detector & Accelerator chain:
⇒Higher Luminosity → higher event rate
→Detector changes/improvements:
→DAQ redesign
→I mproved performance:
>Detector Coverage
>Tracking Quality

>New Trigger strategies for heavy flavors: displaced vertex trigger

...and a successful endeavor!

•SVT is capable of digesting >20000 evts/second to identifying tracks in the silicon

•CDFII has been running it since day -1

•The recipe uses specialized hardware:

1)Clustering

Find clusters (hits) from detector 'strips' at full detector resolution

2) Template matching

I dentify roads: pre-defined track templates with coarser detector bins (superstrips)

3) Linearized track fitting

Fit tracks, with combinatorial limited to clusters within roads

Benchmarks

What was known about non-Y-produced b (PDG'04)

Λ_b^0 DECAY MODES Fraction (Γ_i/Γ) Confidence		ρ ce level (MeV/c)					
$J/\psi(1S)\Lambda$ $\Lambda_c^+ \pi^-$ $\Lambda_c^+ a_1(1260)^-$ $\Lambda_c^+ \ell^- \overline{\nu}_\ell \text{ anything} \qquad [t]$		$(4.7\pm2.8) imes$ seen	$(4.7\pm2.8)\times10^{-4}$ seen				
		seen [t] (9.2±2.1) %		B ⁰ _S DECAY MODES	p Fraction (Γ_i/Γ) Confidence level (MeV/c)		
ρπ ⁻ pK ⁻ Λγ		< 5.0 × < 5.0 × < 1.3 ×	10^{-5} 10^{-5} 10^{-3}	D_s^- anything $D_s^-\ell^+\nu_\ell$ anything $D_s^-\pi^+$ $D_s^{(*)+}D_s^{(*)-}$	$(94 \pm 30) \\ [kkk] (7.9 \pm 2.4) \\ < 13 \\ (23 \pm 21) \\ ($) % 4) % %	- 2322 -
				$J/\psi(1S)\phi$ $J/\psi(1S)\pi^{0}$ $J/\psi(1S)\eta$ $\psi(2S)\phi$	(9.3 ± 3.3) < 1.2 < 3.8	$ \begin{array}{c} \times 10^{-4} \\ \times 10^{-3} \\ \times 10^{-3} \end{array} 90\% $	1590 6 1788 6 1735 1123
	B_c^+ DECAY MODES × B(\overline{b}	→ B_c) Fraction	(Г _і /Г) Сог	$ \begin{array}{c} \pi^{+}\pi^{-} \\ \pi^{0}\pi^{0} \\ \eta^{0} \end{array} $	< 1.7 < 2.1 < 1.0	$\begin{array}{ccc} \times 10^{-4} & 90\% \\ \times 10^{-4} & 90\% \\ \times 10^{-3} & 90\% \end{array}$	6 2681 6 2681 6 2655
	The following quanti $\Gamma_i/\Gamma imes B(\overline{b} \to B_c)$	ties are not pure brancl	hing ratios; rathe	$ \begin{array}{c} \eta \eta \\ \rho^0 \rho^0 \\ \phi \rho^0 \\ \phi \phi \\ \phi \phi \\ \phi \phi \end{array} $	< 1.5 < 3.20 < 6.17 < 1.183	$ \begin{array}{ccc} \times 10^{-3} & 909 \\ \times 10^{-4} & 909 \\ \times 10^{-4} & 909 \\ \times 10^{-3} & 909 \\ \times 10^{-3} & 909 \end{array} $	6 2628 6 2570 6 2528 6 2484
	$J/\psi(1S) \ell^{+} \nu_{\ell} \text{ anything}$ $J/\psi(1S) \pi^{+}$ $J/\psi(1S) \pi^{+} \pi^{+} \pi^{-}$ $J/\psi(1S) a_{1}(1260)$ $D^{*}(2010)^{+} \overline{D}^{0}$	$(5.2 \pm)$ < 8.2 < 5.7 < 1.2 < 6.2	$(2.1) \times 10^{-5} \times 10^{-5} \times 10^{-4} \times 10^{-3} \times 10^{-3}$	$ \begin{array}{l} \pi^{+} K^{-} \\ K^{+} (892)^{0} \rho^{0} \\ \overline{K}^{*} (892)^{0} K^{*} (892)^{0} \\ \phi K^{*} (892)^{0} \\ \rho \overline{P} \\ \gamma \gamma \end{array} $	< 2.1 < 5.9 < 7.67 < 1.681 < 1.013 < 5.9 < 1.48	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 2660 2639 2551 2532 2508 2516 2685
				φγ	< 1.2	× 10 ⁻⁴ 90%	6 2588

Lifetimes: fully reconstructed hadronic modes

- Testbed for our ability to understand trigger biases
- Large, clean samples with understood backgrounds
- Excellent mass and vertex resolution
- Prerequisite for mixing fits!

 $\tau(B^+) = 1.661 \pm 0.027 \pm 0.013$ ps $\tau(B^0) = 1.511 \pm 0.023 \pm 0.013$ ps

 $\tau(B_s) = 1.598 \pm 0.097 \pm 0.017 \text{ ps}$

Systematics (µm)

Effect	Variation (μm)	Variation (μm)
	B^0	B_s
MC input $c\tau$	negligible	negligible
p_T reweight	1.9	1.9
Scale Factor	negligible	negligible
Bkg ct description	1.1	1.1
Bkg fraction	2.0	2.0
I.P. correlation	1.0	1.0
Eff. parameterization	1.5	1.5
L_{xy} significance	negligible	2
$\Delta \Gamma_s$	-	1.0
Alignm. + others	2.4	2.4
Total	4.2	4.7

A REPORT OF A R

Improving SM Tools

•QCD corrections ↔ uncertainty on the b wave function inside the meson
•This is something that can be constrained experimentally!

I mproving phenomenological tools: Hadronic Moments

No room for everything... I will focus on one example:

•HQET/OPE is a fundamental tool for CKM physics with B mesons. For instance it relates:

•B \rightarrow X_uIv to [b \rightarrow uIv] \Rightarrow V_{ub}

•B \rightarrow X_cIv to [b \rightarrow cIv] \Rightarrow V_{cb}

•OPE is "semi-empirical": parameterizes any prediction in a series expansion of effective operators

•Expectation value of these operators is a "universal" property of the theory which can be assessed with concurrent measurements

•Example: V_{cb} (±1%_{exp}±2.5%_{theo}) \Leftrightarrow Hadronic Moments

Moments-ology

Many inclusive observables can be written using the same expansion (same non-perturbative parameters). The spectral moments:

- Photonic moments: Photon energy in b \rightarrow s γ
- Leptonic moments: $B \rightarrow X_c Iv$, lepton E in B rest frame (CLEO, DELPHI, BABAR)

(CLEO)

• Hadronic moments: $B \rightarrow X_c Iv$, recoil mass $M(X_c)$ (CLEO, DELPHI, BABAR, CDFII)

$$M_{1} = \int_{s_{H}^{min}}^{s_{H}^{max}} ds_{H} \left(s_{H} - \overline{m}_{D}^{2} \right) \frac{1}{\Gamma_{sl}} \frac{d\Gamma_{sl}}{ds_{H}} = \langle s_{H} \rangle - \overline{m}_{D}^{2} , \quad s_{H} \equiv M_{X}^{2}$$
$$M_{2} = \int_{s_{H}^{min}}^{s_{H}^{max}} ds_{H} \left(s_{H} - \langle s_{H} \rangle \right)^{2} \frac{1}{\Gamma_{sl}} \frac{d\Gamma_{sl}}{ds_{H}} = \left\langle \left(s_{H} - \overline{m}_{D}^{2} \right)^{2} \right\rangle - M_{1}^{2}$$

Aim: Constrain the unknown non-pert. parameters and reduce $|V_{cb}|$ uncertainty. With enough measurements: test of underlying assumptions (duality...).

What is X_c?

→~25% of semi-leptonic width is poorly known

Higher mass states: D**

Possible $D' \rightarrow D^{(*)}\pi\pi$ contributions neglected:

- No B→ID' experimental evidence so far
- DELPHI limit: $\begin{cases} BR(b \to D^{+}p^{-}\ell^{-}n) < 0.18\% @ 90\% CL \\ BR(b \to D^{*+}p^{+}p^{-}\ell^{-}n) < 0.17\% @ 90\% CL \end{cases}$

We assume no D' contribution in our sample

Analysis Strategy

25

 $s_H \equiv M_{X_a}^2$

D⁰ and D^{*0} well-known
→ measure only f^{**}
→ only shape needed

 Measure f^{**}(s_H)
 Correct for background, acceptances, bias
 → moments of D^{**}
 Add D and D^{*} → M₁,M₂
 Extract OPE parameters
 (L, l₁)

$$\frac{1}{\Gamma_{sl}}\frac{d\Gamma_{sl}}{ds_H} = \frac{\Gamma_0}{\Gamma_{sl}}\cdot\delta(s_H - m_{D^0}^2) + \frac{\Gamma_*}{\Gamma_{sl}}\cdot\delta(s_H - m_{D^{*0}}^2) + \left(1 - \frac{\Gamma_0}{\Gamma_{sl}} - \frac{\Gamma_*}{\Gamma_{sl}}\right)\cdot f^{**}(s_H)$$

m (GeV/c²)

3.5

D⁺/D^{*+} Reconstruction

Backgrounds

Prompt pions faking π^{**} :

- fragmentation
- underlying event

→ separate B and primary vertices

(kills also prompt charm)

→ use impact parameters to discriminate

→ model: wrong-sign $\pi^{**+}\ell^{-}$ combinations

Physics background: $B \rightarrow D^{(*)+}D_{s}^{-}, D_{(s)} \rightarrow XIv$ $\rightarrow MC$, subtracted

Combinatorial background under the D^(*) peaks: → sideband subtraction

Feed-down in signal: $D^{**0} \rightarrow D^{*+} (\rightarrow D^{+}\pi^{0})\pi^{-}$ irreducible background to $D^{**0} \rightarrow D^{+}\pi^{-}$. \rightarrow subtracted using data: \rightarrow shape from $D^{0}\pi^{-}$ in $D^{**0} \rightarrow D^{*+} (\rightarrow D^{0}\pi^{+})\pi^{-}$ \rightarrow rate:

½ (isospin) x eff. x BR

Corrected Mass and D** moments

Procedure:

- Unbinned procedure using weighted events.
- Assign negative weights to background samples.
- Propagate efficiency corrections to weights.
- Take care of the D⁺ / D⁺⁺ relative normalization.
- Compute mean and sigma of distribution.

Results (in paper):

No Fit !!!

$$m_{1} = \langle m_{D^{**}}^{2} \rangle = (5.83 \pm 0.16_{stat}) GeV^{2}$$
$$m_{2} = \langle (m_{D^{**}}^{2} - m_{1})^{2} \rangle = (1.30 \pm 0.69_{stat}) GeV^{4}$$

Systematic Errors

	Δm_1 (GeV ²)	Δm_2 (GeV ⁴)	ΔM ₁ (GeV ²)	ΔM ₂ (GeV ⁴)	ΔΛ (GeV)	$\Delta\lambda_1$ (GeV ²)
Stat.	0.16	0.69	0.038	0.26	0.078	0.057
Syst.	0.08	0.22	0.068	0.13	0.091	0.082
Mass resolution	0.02	0.13	0.005	0.04	0.012	0.009
Eff. Corr. (data)	0.03	0.13	0.006	0.05	0.014	0.011
Eff. Corr. (MC)	0.06	0.05	0.016	0.03	0.017	0.006
Bkgd. (scale)	0.01	0.03	0.002	0.01	0.003	0.002
Bkgd. (opt. Bias)	0.02	0.10	0.004	0.03	0.006	0.006
Physics bkgd.	0.01	0.02	0.002	0.01	0.004	0.002
D+ / D*+ BR	0.01	0.02	0.002	0.01	0.004	0.002
D ⁺ / D [*] + Eff.	0.02	0.03	0.004	0.01	0.005	0.002
Semileptonic BRs			0.065	0.10	0.064	0.022
ρ ₁					0.041	0.069
Τ _i					0.032	0.031
α					0.018	0.007
m _b , m _c					0.001	0.008
Choice of p _l * cut					0.019	0.009

Results & Comparison with other experiments

•Good agreement with HQET ⊕ previous determinations.

First measurement at hadron machines: different environment and experimental techniques.
Competitive with other experiments. •Little model dependency. No assumptions on shape or rate of D** components.

•Through integration with other experiments and other "moments" we can seriously probe HQET/QHD

Extraction of the HQE Parameters

•Combination of all the experimental measurements of the hadronic moments

•Effective determination of the two OPE operators relevant at order $1/m_B(\Lambda)$ $1/m_B^2(\lambda_1)$

•CDF contributes as much as the B factories in this determination!

B_s Mixing

Bs/Bd mixing rate (V_{td}/V_{ts})

Beyond the SM physics could enter in loops!

B production at the TeVatron

•Production: $gg \rightarrow bb$ NO QM coherence, unlike B factories Opposite flavor at production→one of the b quarks can be determined to assess the flavor of the other at production

•Fragmentation products have some memory of b flavor as well

B_s Mixing 101

 $A = \frac{Nunmix - Nmix}{Nunmix + Nmix}$

• $\Delta m_s >> \Delta m_d$

Different oscillation regime

→ Amplitude Scan

B lifetime

Perform a 'fourier transform' rather than fit for frequency

Amplitude Scan

•Mixing amplitude fitted for each (fixed) value of Δm

•On average every Δm value (except the true Δm) will be 0

•"sensitivity" defined for the average experiment [mean 0]

•The actual experiment will have statistical fluctuations

•Actual limit for the actual experiment defined by the systematic band centered at the measured asymmetry

B_s Mixing Ingredients

Flavor Tagging

Nunmix-Nmix

Nunmix+Nmix

A=

Reconstructed decay

Several methods, none is perfect !!!

Bs	Mixing	tagging pe	erformance			
a	Summer '04	εD² Hadronic (%)	εD ² Semileptonic (%)			
at	Muon	$0.46 \pm 0.11 \pm 0.03$	$0.577{\pm}0.047{\pm}0.034$			
σ	Electron	$0.18 \pm 0.06 \pm 0.02$	$0.293{\pm}0.033{\pm}0.017$			
m	JQ/Vertex JQ/Prob.	$0.14 \pm 0.07 \pm 0.01$	$0.263{\pm}0.035{\pm}0.021$			
C		$0.11 \pm 0.06 \pm 0.01$	$0.150{\pm}0.026{\pm}0.015$			
o	JQ/High p _T	$0.24 \pm 0.09 \pm 0.01$	$0.157{\pm}0.027{\pm}0.015$			
L L	Total	1.12 ± 0.18	1.429 ± 0.093			
sured	 convention: first uncertainty is statistical, second is systematic use exclusive combination of tags results for hadronic and semileptonic comparable within errors use calibration derived from appropriate sample (ie hadronic for D_sπ) Fall '05 (mostly re-optimize existing taggers): 1.12±0.18 → 1.55±0.16 					
Meas						

- convention: first uncertainty is statistical, second is systematic
- use exclusive combination of tags
- results for hadronic and semileptonic comparable within errors
- use calibration derived from appropriate sample (ie hadronic for $D_s\pi$)

 $-1.43\pm0.093 \rightarrow 1.55\pm0.085$

Semileptonic modes: momentum uncertainty Fully reconstructed: Lxy uncertainty \rightarrow improve reconstruction

B_s Mixing: semileptonic

 Δm_{s} > 6.8 ps⁻¹ @ 95% CL Sensitivity: 10.6 ps⁻¹

B_s Mixing: hadronic

 $\bullet B_s \rightarrow D_s \pi$

- • $D_s \rightarrow \phi \pi$ (550±40 ~1.8)
- • $D_s \rightarrow K^*K$ (240±40 ~1.7)
- • $D_s \rightarrow \pi \pi \pi$ (110±25 ~1.0)

•Using also $B_s \rightarrow D_s \pi \pi \pi$ [about 1/3 more statistics]

∆m_s> 0.0 ps⁻¹ @ 95% CL Sensitivity: 9.8 ps⁻¹ Low statistics, but promising!

Combined Bs mixing limit

Competitive in precision with best experiment at large Dm_s

More statistics and improvements to come...

B_s Mixing Perspectives

•Data (lumin.: $350pb^{-1} \rightarrow 600pb^{-1} \rightarrow ??$) •New Modes (e.g. $Bs \rightarrow Ds^*\pi > 2x?$) • ϵD^2 :

- •Additional taggers (SSK, OSK...) •I mprove existing algorithms •Proper time resolution
 - Refine event-by-event reconstruction
 - •Optimal usage of kinematics for nonclosed modes

With the March 2006 data sensitivity~SM value

What happens for large x_s?

Indirect Measurement of Δm_s :

$$\frac{\Delta\Gamma_{s}}{\Delta m_{s}}\Big|_{SM} = \frac{2}{3\boldsymbol{p}} \frac{m_{t}^{2}}{m_{b}^{2}} \frac{h\left(\frac{m_{t}^{2}}{M_{W}^{2}}\right)}{\left(1 - \frac{8}{3}\frac{m_{c}^{2}}{m_{b}^{2}}\right)} = (3.7^{+0.8}_{-1.5}) \times 10^{-3}$$

-SM $\Delta\Gamma_s/\Gamma_s$ =0.12±0.06 (Dunietz, Fleischer & Nierste)

Probing at large Δm_s : $\Delta \Gamma / \Gamma$

- $B_s \rightarrow J/\psi \phi$
 - B →VV, mixture of CP even/odd separate by angular analysis
 - Combine two-lifetime fit + angular $\rightarrow \Delta\Gamma_{\rm s}$ = $\Gamma_{\rm H}$ - $\Gamma_{\rm L}$

$$\frac{\Delta \Gamma_s}{\Gamma_s} = 0.65^{+0.25}_{-0.33} \pm 0.01$$

Beyond the SM

Analyses like this have laid down the path and the tools and techniques for the exploration of the SM boundaries:

- •Non SM effects:
 - •b→d ?
 - •b→s

•Xs

•Rare decays $(b \rightarrow s\gamma)$ •B_s $\rightarrow \mu\mu,\mu\mu\phi$ etc. •B $\rightarrow \phi K$ •B_s $\rightarrow \phi\phi$

Rare decays

•Exploit the large B production rate

- •Measure relative BR (e.g. $\mu\mu$ to J/ ψK) to factor out absolute ϵ and luminosity measurements
- •SM: $BR(B_s \rightarrow \mu\mu) < 3.8E-9$
- Sensitive to new physics!

Result: World's best limits BR($B_s \rightarrow \mu\mu$) < 2.0x10⁻⁷ @95% CL BR($B_d \rightarrow \mu\mu$) < 4.9x10⁻⁸ @95% CL

Publ: PRL 93, 032001 2004 Update: Hep-ex/0502044

 $BR(D^0 \to mm) \le 2.4 \times 10^{-6} at 90\% CL$ PRD 68, 091101 2003

CP: SSS

hep-ex/0502044

•b→sss transitions are 'misbehaving' at B factories

•...CDF II can look at them too. We started from ϕK :

Perspectives

Exciting times ahead:

- Most analyses sensitive to BSM physics are statistically limited
- Significant improvements can be made including new modes and techniques
- B_s results will be an important complementary addition to the CKM mapping!

Conclusions

•We are living an exciting transition era of more and more quantitative results in the CKM sector

•BSM physics could be around the corner, but hard to discern models without direct evidences

•With LHC we will soon jump in the completely uncharted territory!

 Living this constant exploration of new discoveries puts us at the forefront of human knowledge, but this is not news!

"Modern science did not spring perfect and complete, as Athena from the head of Zeus, from the mind of Galileo and Descartes"

Purgatory

A guiding theme

•Exploring the boundaries of knowledge is a recurrent theme in history

•Geographical explorations exemplify the paradigm: Question

(Why? Where? What? When? Who?)

Development of tools

(ships, telescope, microscope...)

Explore the boundaries of knowledge (ships, telescope, microscope)

Jump in! (the unknown) (America, planets, atoms...)

Hadronic Moments, HQET and Vcb

Most precise determination of V_{cb} comes from Γ_{sl} ("inclusive" determination):

$$\Gamma_{sl}(b \to c\ell^{-}\bar{\boldsymbol{n}}) = \frac{BR(b \to c\ell^{-}\bar{\boldsymbol{n}}_{\ell})}{\boldsymbol{t}_{b}} = |V_{cb}|^{2} \times F_{theory}$$

Y(4S), LEP/SLD, CDF measurements. Experimental $\Delta |V_{cb}| \sim 1\%$

Theory with pert. and non-pert. corrections. $\Delta |V_{cb}| \sim 2.5\%$

 $\begin{array}{l} F_{theory} \mbox{ evaluated using OPE in HOET: expansion in } \alpha_s \mbox{ and } 1/m_P \mbox{ powers:} \\ O(1/m_B) \rightarrow 1 \mbox{ parameters: } \Lambda \mbox{ (Bauer et al., PRD 67 (2003) 071301)} \\ O(1/m_B^2) \rightarrow 2 \mbox{ more parameters: } \lambda_1, \lambda_2 \mbox{ constrained from pseudo-scalar/vector B and D mass differences} \\ O(1/m_B^3) \rightarrow 6 \mbox{ more parameters: } \rho_1, \rho_2, T_{1-4} \mbox{ mass differences} \end{array}$

$$G_{sl} = \frac{G_F^2 |V_{cb}|^2}{192p^3} m_B^5 c_1 \left\{ 1 - c_2 \frac{a_s}{p} + \frac{c_3}{m_B} \right\} (1 - c_4 \frac{a_s}{p}) + \frac{c_5}{m_B^2} \left(2 + c_6 \frac{a_s}{p} \right) + O(\frac{1}{m_B^3}) + O(\frac{a_s^2}{p}) \cdots \right\}$$

How can CDF look at it?

Must reconstruct all channels to get all the D^{**} states.
 → However CDF has limited capability for neutrals

- $B^0 \rightarrow D^{**-}I^+v$ always leads to neutral particles \rightarrow ignore it
- $B \rightarrow D^{**0}I \rightarrow v$ better, use isospin for missing channels:
 - $D^{**0} \rightarrow D^+\pi^- OK$
 - $D^{**0} \rightarrow D^0 \pi^0$ Not reconstructed. Half the rate of D⁺ π^-
 - $D^{**0} \rightarrow D^{*+}\pi^{-}$
 - $D^{*+} \rightarrow D^0 \pi^+ OK$
 - $D^{*+} \rightarrow D^{+}\pi^{0}$ Not reconstructed. Feed-down to $D^{+}\pi^{-}$

- $D^{**0} \rightarrow D^{*0}\pi^0$ Not reconstructed. Half the rate of $D^{*+}\pi^-$

How to solve the problem in practice

π^{**} Selection

Based on topology:

• impact parameter significances w.r.t. primary, B and D vertices

Cuts are optimized using MC and background (WS) data:

Additional cuts only for D+:

- •p_T > 0.4 GeV
- •ΔR < 1.0

• $|d_0^{PV}/\sigma| > 3.0$ • $|d_0^{BV}/\sigma| < 2.5$

 $|d_0^{DV}/\sigma| > 0.8$ $L_{xy}^{B\to D} > 500 \mu m$

Raw m** distributions

Measured in Δm^{**} , shifted by M(D^{(*)+}), side-band subtracted.

Efficiency Corrections

1) Correct the raw mass for any dependence of ϵ_{reco} on M(D^{**}):

- Possible dependence on the D** species (spin).
- Monte-Carlo for all D** (Goity-Roberts for non-resonant), cross-checked with pure phase space decays.

•Detector simulation shortcomings cause residual data/MC discrepancy: derive corrections from control samples (D* and D daughters)

2) Cut on lepton energy in B rest frame:

- Theoretical predictions need well-defined p₁* cut.
- We can't measure p₁*, but we can correct our measurement to a given cut:

Final Result

$$\begin{split} m_1 \equiv \left\langle m_{D^{**}}^2 \right\rangle &= (5.83 \pm 0.16_{\rm stat} \pm 0.08_{\rm syst}) \ {\rm GeV}^2 \\ m_2 \equiv \left\langle \left(m_{D^{**}}^2 - \left\langle m_{D^{**}}^2 \right\rangle \right)^2 \right\rangle &= (1.30 \pm 0.69_{\rm stat} \pm 0.22_{\rm syst}) \ {\rm GeV}^4 \\ \rho(m_{1'}m_2) = 0.61 \end{split}$$

$$M_1 \equiv \langle s_H \rangle - m_{\overline{D}}^2 = (0.467 \pm 0.038_{\text{stat}} \pm 0.019_{\text{exp}} \pm 0.065_{\text{BR}}) \text{ GeV}^2$$
$$M_2 \equiv \left\langle (s_H - \langle s_H \rangle)^2 \right\rangle = (1.05 \pm 0.26_{\text{stat}} \pm 0.08_{\text{exp}} \pm 0.10_{\text{BR}}) \text{ GeV}^4 ,$$

Systematics

I nput parameters

- •D^(*) Masses, in combining D^(*) with D^{**} m \rightarrow M [PDG errors]
- •BR ($B \rightarrow D^+/D^{*+} m \rightarrow M$) [PDG errors]
- •Experimental
 - •Detector resolution [re-smear satellite sample by full resolution: ±60MeV]
 - •Data/MC Efficiency discrepancies [measure P_t and m dependency on control sample, probe different fit models]
 - Decay models in MC [full kinematic description vs pure phase space]
 - •P₁* cut correction [repeat measurement at various P₁* thresholds]
- Backgrounds
 - •Scale [charge correlation WS/RS from fully reconstructed B: ±4%]
 - •Optimization Bias [repeat optimization procedure on bootstrap copies of the sample]
 - •Physics background [vary ±100%]
 - •B \rightarrow X_c τ v [estimate τ/μ yield and kinematic differences using MC]
 - •Fake leptons [no evidence in WS D⁺l⁺, charge-correlated negligible]

CP: hh modes

Good agreement with B factories

•First measurement ever of $B_s \rightarrow KK$

 $\frac{BR(B_d \to \pi^{\pm} \pi^{\mp})}{BR(B_d \to K^{\pm} \pi^{\mp})} = 0.24 \pm 0.06 \ (stat.) \pm 0.05 \ (syst.)$

$$\begin{split} A_{\mathsf{CP}} &= \frac{N(\overline{B}_d^0 \to K^- \pi^+) - N(B_d^0 \to K^+ \pi^-)}{N(\overline{B}_d^0 \to K^- \pi^+) + N(B_d^0 \to K^+ \pi^-)} = -0.04 \pm 0.08 \; (stat.) \pm 0.01 \; (syst.) \\ \frac{f_d \cdot BR(B_d \to \pi^\pm \pi^\mp)}{f_s \cdot BR(B_s \to K^\pm K^\mp)} = 0.48 \pm 0.12 \; (stat.) \pm 0.07 \; (syst.) \end{split}$$

 $\frac{f_s \cdot BR(B_s \to K^{\pm}K^{\mp})}{f_d \cdot BR(B_d \to K^{\pm}\pi^{\mp})} = 0.50 \pm 0.08 \ (stat.) \pm 0.07 \ (syst.)$

 $\begin{aligned} &\frac{BR(B_s \to \pi^{\pm}\pi^{\mp})}{BR(B_s \to K^{\pm}K^{\mp})} < 0.10 @ 90\% \ C.L. \\ &\frac{BR(B_d \to K^{\pm}K^{\mp})}{BR(B_d \to K^{\pm}\pi^{\mp})} < 0.17 @ 90\% \ C.L. \\ &\frac{f_s \cdot BR(B_s \to K^{\pm}\pi^{\mp})}{f_d \cdot BR(B_d \to K^{\pm}\pi^{\mp})} < 0.11 @ 90\% \ C.L. \end{aligned}$

http://www-cdf.fnal.gov/physics/new/bottom/040722.blessed-bhh/

 $BR(\Lambda_b \to hh) < 22 \cdot 10^{-6} \ (90\% C.L.)$

http://www-cdf.fnal.gov/physics/new/bottom/040624.blessed_Lb_hh_limit/

