Measurement of Hadronic Moments in Semileptonic *B* Decays

(Blessing Talk)

Alessandro Cerri, Hung-Chung Fang Ramon Miquel, Marjorie Shapiro <u>Laurent Vacavant</u>

Introduction

$\frac{\text{Inclusive }V_{cb}\text{ Determination and}}{\text{hadronic moments}}$

• Inclusive semi-leptonic B decays:

 $\Gamma(\mathbf{B} \rightarrow \mathbf{X}_{c} \mathbf{l} \mathbf{v}) = \|\mathbf{V}_{cb}\|^{2} f(\mathbf{\Lambda}, \mathbf{\lambda}_{1}, \mathbf{\lambda}_{2,...})$

- Moments: $g(\Lambda, \lambda_1, \lambda_2, \rho_1, \rho_2, T_i, \alpha_s)$
 - one can measure the moments to improve the knowledge on $\,V_{\rm cb}$
 - currently the theory uncertainties dominate
 - general test of non-perturbative aspects of HQET
 - measuring Λ, λ_1 in several ways and finding consistency would be a powerful test of the OPE treatment of HQET
- Experimentally:
 - CLEO, BABAR: inclusive technique with fully reconstructed B on the away side
 - DELPHI: inspired our approach

Hadronic Mass

- Explicitly measure only the D^{**} component, f^{**}(s_H), normalized to 1. Only the shape is needed.
- PDG values for D and D* masses and b.r. will be inserted.

	The strategy								
CDF6754	CDF6972/6973								
Reconstruct D*/D+	Add another π**→D**	Correct for ε(m**), ε(D+)/ε(D*)	Measure <m**<sup>2>, <m**<sup>4></m**<sup></m**<sup>						
 Collect as many modes as possible: ·(Kπ)π* ·(Kπππ)π* ·(Kπππ⁰)π* ·Kππ ·Check yields ·Validate MC 	 Selection: Optimize on MC+WS combinations Cross check on π* π** Background Combinatorial D' B→DD cc 	 Measure selection bias on m** from: MC D* candidates Rely on MC (& PDG) for: ε(D+)/ε(D*) Unseen modes (Isospin) Lepton spectrum acceptance 	• Subtract backgrounds • Use PDG to go $\Delta m_{**} \rightarrow m_{**}$ • Compute $\langle m_{**}^2 \rangle$ & $\langle m_{**}^4 \rangle$ • Include D ^{(*)0} • Extract Λ , λ_1 • Systematics						

•••

- D^0 , D^+ , D^{*+} : 3D vertex of $K\pi(\pi)$
- Lepton +D: 3D vertex
- Additional track (π^{**}) for D**
 - use the track's d0 w.r.t. the B and Primary vertices to tell π^{**} from prompt tracks

Changes to analysis since preblessing

Systematic Errors

- During preblessing we were asked to see if we could improve our systematics
- Systematics dominated by modeling of efficiency:
 - MC statistics
 - MC/Data corrections
- m^{**} cut was set at 3.5 GeV for preblessing analysis
- We have increased our MC statistics and <u>removed</u> the 3.5 GeV cut.

Efficiency vs *m***

- Bulk measured from MC
- Low statistics at large m^{**} were significant source of uncertainty
- \rightarrow Increase MC statistics

MC/Data corrections

- •Dominant source of systematics!
- • π^* reproduces π^{**} topology but statistics too low:
 - •Use more D^* candidates (two weeks ago we were using only $D^0 \rightarrow K\pi$)
 - •Cross check on non-triggering D^0 daughters (helps for p_T)

All non-trigger D^* daughters

New corrections

- Use all D^* daughters to estimate PV, BV and DV alone, based on a linear fit
- Replace with flat line fit to estimate systematics

*m*** cutoff

•Cut-off is a tool to trade off statistics \leftrightarrow systematics •None of this affects m_1 substantially: $m_2 (\sim m^4)$ is more sensitive

•Extrapolation attempted (both functional and with MC histograms):

•Systematic error with cut-off \sim statistical error without cut-off

•Introduces model-dependency

We have removed the cutoff

- •Larger (\sim x1.5 for m₂) statistical uncertainty than what shown last week
- •Improved efficiency corrections make it more reasonable than what initially estimated
- •Completely model-independent
- *0* systematics from cut-off
- •Expect a significant shift in m_2

New Results

systematics

Error	Δm_1	Δm_2	ΔM_1	ΔM_2	$\Delta\Lambda$	$\Delta \lambda_1$
	(GeV^2)	(GeV^4)	(GeV^2)	(GeV^4)	(GeV)	(GeV^2)
Statistical	0.16	0.69	0.037	0.25	0.075	0.055
Total systematic	0.08	0.20	0.065	0.12	0.090	0.082
Mass resolution	0.02	0.13	0.005	0.04	0.012	0.009
Efficiency (data)	0.03	0.13	0.006	0.05	0.014	0.011
Efficiency (MC)	0.06	0.05	0.016	0.03	0.017	0.006
p_l^* cut			0.001	0.00	0.001	0.000
Background scale	0.01	0.03	0.002	0.01	0.003	0.002
Physics background	0.01	0.02	0.002	0.01	0.004	0.002
D^+/D^{*+} BR	0.01	0.02	0.002	0.01	0.004	0.002
D^{+}/D^{*+} Eff.	0.02	0.03	0.004	0.01	0.005	0.002
Semileptonic BR's			0.062	0.10	0.064	0.022
ρ_1	—				0.041	0.069
T_i					0.032	0.031
α_s	—		_		0.018	0.007
m_b, m_c					0.001	0.008
Choice of p_l^* cut					0.019	0.009

New Results

moments

OLD

NEW

$$m_1 = (5.73 \pm 0.15_{\text{stat}} \pm 0.08_{\text{syst}}) \text{ GeV}^2$$

$$m_2 = (0.85 \pm 0.49_{\text{stat}} \pm 0.46_{\text{syst}}) \text{ GeV}^4$$

$$\begin{array}{rcl} m_1 &=& (5.83 \pm 0.16_{\rm stat} \pm 0.08_{\rm syst}) \ {\rm GeV^2} \\ m_2 &=& (1.30 \pm 0.69_{\rm stat} \pm 0.20_{\rm syst}) \ {\rm GeV^4} \end{array}$$

•m₂ significantly affected, as expected

•Change is within statistical error:

$$(1.30-0.85) = 0.45 \sim 0.48 = (0.69^2 - 0.49^2)^{\frac{1}{2}}$$

$ \begin{array}{rcl} M_1 &=& \left(0.437 \pm 0.035_{\rm stat} \pm 0.018_{\rm exp} \pm 0.060_{\rm BR} \right) \ {\rm GeV^2} \\ M_2 &=& \left(0.86 \pm 0.20_{\rm stat} \pm 0.15_{\rm exp} \pm 0.07_{\rm BR} \right) \ {\rm GeV^4} &, \end{array} $	$ \begin{array}{rcl} M_1 &=& (0.459\pm 0.037_{\rm stat}\pm 0.019_{\rm exp}\pm 0.062_{\rm BR}) \ {\rm GeV}^2 \\ M_2 &=& (1.04\pm 0.25_{\rm stat}\pm 0.07_{\rm exp}\pm 0.10_{\rm BR}) \ {\rm GeV}^4 \ , \end{array} $
$\begin{split} \Lambda &= & (0.337 \pm 0.066_{\rm stat} \pm 0.037_{\rm exp} \pm 0.059_{\rm BR} \pm 0.060_{\rm theo}) \ {\rm GeV} \\ \lambda_1 &= & (-0.141 \pm 0.046_{\rm stat} \pm 0.035_{\rm exp} \pm 0.017_{\rm BR} \pm 0.080_{\rm theo}) \ {\rm GeV}^2 \end{split}$	$\begin{split} \Lambda &= (0.390 \pm 0.075_{\rm stat} \pm 0.026_{\rm exp} \pm 0.064_{\rm BR} \pm 0.058_{\rm theo}) \ {\rm GeV} \\ \lambda_1 &= (-0.182 \pm 0.055_{\rm stat} \pm 0.016_{\rm exp} \pm 0.022_{\rm BR} \pm 0.077_{\rm theo}) \ {\rm GeV}^2 \end{split}$

 Λ , λ_1

Histogram y ranges are different!!!

OLD

Questions from preblessing

"Reconstruction efficiency of soft pion from D^* will have to be understood with respect to the D^- ."

- This efficiency only relevant for relative D^+/D^{*+} normalization.
- Analysis uses D^+/D^* efficiency ratio from MC
- Check:
 - Count D^+ and D^* in data and compare with MC prediction
 - ratio MC/data is 0.87 ± 0.08
 - Assign the full difference as a systematic
- This difference amounts to 13%
- This is anyway a small source of systematics for m_1 and m_2

"Z-hits have not been dropped from this analysis. Double careful for providing that Lxy is reliably predicted."

• Comparisons of $L_{XY}(l-D)$ and $L_{XY}(D)$ (figs. 15 and 16 of CDF 6754)

• Data-MC chi-sq probability (in %) comparisons:

	Крі		Sat		K3pi		D ⁺	
	е	μ	е	μ	е	μ	е	μ
Lxy(I-D)	48	23	41	12	32	69	29	0.07
Lxy(D)	23	88	69	99	95	47	67	2
Lxy(D→D)	61	29	6	13	17	89	24	2

"Check Dalitz structure of D^+ decay to make sure we understand the efficiencies and the possible background beneath the peak, same for D^0 ."

- Evtgen *includes* Dalitz structure in decay table.
- Comparison of data and MC show disagreement in amount of destructive interference.
- Measurement of D^+/D^{*+} (MC/data) yields = 0.87 ± 0.08

 \rightarrow use 13% systematic uncertainty on relative. normalization

"What is the effect of incompletely reconstructed *D* mesons in the sidebands when you do sideband subtraction? Can you quantify the contributions?"

- For D^* , sideband subtraction is done using Δm . (Shape determined using WS π^* . Normalization from RS sideband region.)
- For D^+ , sidebands in $K2\pi$ are used.
- In all cases, fit uses

(RS signal - WS signal) - (RS bkgd - WS bkgd).

This should statistically remove such partially reconstructed events, at cost of increased statistical uncertainty.

"What is the effect of the auto-reflections in $D^0 \rightarrow K\pi$ and $D^0 \rightarrow K\pi\pi\pi\pi$ in calculating relative rates? $K\pi$ should be negligible but $K3\pi$ there will be some duplicates."

- $(10.2 \pm 0.5)\%$ of $K3\pi$ have duplicates due to $K-\pi$ swapping.
- We explicitly remove duplicate candidates. (These will give nearly identical Δm .)
- Note: <u>only</u> $D^0 \to K\pi$ used to calculate normalization w.r.t. D^+ .
- $K3\pi/K\pi$ (MC/data) yields = 1.04 ±0.06.

"Comparison of impact parameter significances: it would be nice to understand how the discrepancy between MC and data is split between numerator and denominator"

- BV comparisons significantly worse than PV. Chi-sq indicate neither errors nor values are statistically compatible, pulls better in general
- Both error and value shifted slightly to left for MC relative to data.

"Systematics for the π^* efficiency should be repeated with more statistics since it dominates the systematics."

P, efficiency for the DV cut

 γ^2 / ndf

Prob

p0

р1

48.03 / 39

 0.9134 ± 0.01478

-0.009528 ± 0.009408

0.1521

Done! •

"Background from fake leptons and a *D*"? How large is it?"

- Masa presented study of fake rates using WS *l-D^o* and *l-D** (10 Feb and 17 Feb, Semileptonic mtg.)
- μ and e rates similar: 5-6 %
- Study of RS *e* fakes using *dE/dx* shows #(RS fakes)~# (WS fakes)

 (212 ± 34) RS : (360 ± 40) WS.

Although $\sim 2\sigma$ difference, allow for $\sim 25\%$ charge asymmetry.

- This would imply a $\leq 6\% \times 25\% = 1.5\%$ correction after WS π^{**} subtraction.
- This is small compared to the 4% charge asymmetry systematic uncertainty used in this analysis.

"Background shape from the embedding technique has to be finished and presented."

• After **300** embedding passes on complete fully-reconstructed sample, only ~30 events pass final selection cuts.

More passes through embedding would result in same events being used multiple times.

• With current fully-reconstructed statistics, we cannot reliably measure shape.

We are forced to use WS events for background model.

"What happens when you do not cut on the *m*** distribution?"

• We have removed this cut from the default analysis. See previous discussion.

"How do the results compare to other experiments?"

• Warning: results from other experiments translated to $p(l^*)$ >700 MeV by us for comparison only (assumes HOET ok)

"There may be ' D^{**} ' states that do not decay through $D^{(*)+}\pi$." (Elliot Lipeles)

- DELPHI has put limits on radial excitations (D').
- We have looked for possible $D_S K$ states and see no evidence.
 - reconstructed $D_s \rightarrow \phi \pi$, "K**" not in the fit, std D⁺ selection

after all out cuts: RS K**-l: -4.4±9.9 evts WS K**-l: 2.3±8.9 evts

• This analysis based on assumption that D^{**} spectrum saturated by $D^{(*)}\pi$.

"Denser events may have higher failure rates in fully reconstructed *B* modes than in semileptonic modes. Could this affect 4% estimate of charge asymmetry uncertainty?" (Matt Herndon)

- 4% is product of two factors:
 - ~20% charge asymmetry in underlying tracks around B^{\pm}
 - ~20% from B^{\pm} content in $l D^{(*)+}$ sample
- Charge asymmetry similar in size to that observed in SST analyses.
- 4% uncertainty translates into one of our <u>smaller</u> systematics in our analysis.

Results to bless

Mass plots: D⁺ channel m

Yields: for ~180 pb⁻¹

		D^{*+} channels	D^+ channel					
	$K^{-}\pi^{+}$	$K^-\pi^+\pi^-\pi^+$	$K^-\pi^+\pi^0$	$K^-\pi^+\pi^+$				
$D^{(*)+}l^-$ yields								
Electrons	1723 ± 42	1299 ± 38	3037 ± 66	6859 ± 122				
Muons	2168 ± 47	1695 ± 43	3611 ± 72	8204 ± 136				
Combined	3890 ± 63	2994 ± 57	6638 ± 98	14416 ± 202				

Raw m** distribution for signal and background:

Fully corrected m** distribution:

Systematics:

pole mass scheme:

Error	Δm_1	Δm_2	ΔM_1	ΔM_2	$\Delta\Lambda$	$\Delta\lambda_1$
	(GeV^2)	(GeV^4)	(GeV^2)	(GeV^4)	(GeV)	(GeV^2)
Statistical	0.16	0.69	0.037	0.25	0.075	0.055
Total systematic	0.08	0.20	0.065	0.12	0.090	0.082
Mass resolution	0.02	0.13	0.005	0.04	0.012	0.009
Efficiency (data)	0.03	0.13	0.006	0.05	0.014	0.011
Efficiency (MC)	0.06	0.05	0.016	0.03	0.017	0.006
$p_l^* \operatorname{cut}$		_	0.001	0.00	0.001	0.000
Background scale	0.01	0.03	0.002	0.01	0.003	0.002
Physics background	0.01	0.02	0.002	0.01	0.004	0.002
D^+/D^{*+} BR	0.01	0.02	0.002	0.01	0.004	0.002
D^{+}/D^{*+} Eff.	0.02	0.03	0.004	0.01	0.005	0.002
Semileptonic BR's			0.062	0.10	0.064	0.022
ρ_1					0.041	0.069
T_i					0.032	0.031
α_s				_	0.018	0.007
m_b, m_c					0.001	0.008
Choice of p_l^* cut					0.019	0.009

Systematics (cont'd):

theo. systematic uncertainties for 1S scheme (exp. syst. similar to pole mass scheme):

Error	Δm_b^{1S}	$\Delta\lambda_1$
	(GeV)	(GeV^2)
$ ho_1$	0.060	0.077
T_i	0.049	0.048
α_s	0.006	0.004
m_b, m_c	0.002	0.006
Choice of p_l^* cut	0.043	0.023

Results:

Moments:

$$\begin{array}{rcl} m_1 &=& (5.83 \pm 0.16_{\rm stat} \pm 0.08_{\rm syst}) \ {\rm GeV}^2 & (61\% \ {\rm correlation}) \\ m_2 &=& (1.30 \pm 0.69_{\rm stat} \pm 0.20_{\rm syst}) \ {\rm GeV}^4 \end{array}$$

$$M_1 = (0.459 \pm 0.037_{\text{stat}} \pm 0.019_{\text{exp}} \pm 0.062_{\text{BR}}) \text{ GeV}^2$$

$$M_2 = (1.04 \pm 0.25_{\text{stat}} \pm 0.07_{\text{exp}} \pm 0.10_{\text{BR}}) \text{ GeV}^4$$
(69% correlation)

HQET parameters:

$$\begin{split} \Lambda &= (0.390 \pm 0.075_{\rm stat} \pm 0.026_{\rm exp} \pm 0.064_{\rm BR} \pm 0.058_{\rm theo}) \ {\rm GeV} \\ \lambda_1 &= (-0.182 \pm 0.055_{\rm stat} \pm 0.016_{\rm exp} \pm 0.022_{\rm BR} \pm 0.077_{\rm theo}) \ {\rm GeV}^2 \end{split}$$

$$\begin{array}{ll} m_b^{1S} &=& (4.661 \pm 0.076_{\rm stat} \pm 0.026_{\rm exp} \pm 0.064_{\rm BR} \pm 0.089_{\rm theo}) \ {\rm GeV} \\ \lambda_1 &=& (-0.276 \pm 0.047_{\rm stat} \pm 0.016_{\rm exp} \pm 0.022_{\rm BR} \pm 0.094_{\rm theo}) \ {\rm GeV}^2 \end{array}$$

Results (cont'd):

Additional material we want to bless (mostly plots for seminar purposes)

Illustration of kinematical variables:

Illustration of topological variables:

Realistic MC/data comparison: plots

Realistic MC/data comparison: χ^2 prob. table

Kinematic variable	$D^0 -$	$\rightarrow K^{-}\pi^{+}$	$D^0 -$	$\rightarrow K^{-}\pi^{+}\pi^{0}$	$D^0 -$	$\rightarrow K^-\pi^+\pi^-\pi^-$	D^+-	$\rightarrow K^{-}\pi^{+}\pi^{+}$
	e	μ	е	μ	е	μ	е	μ
$p_T(\ell)$	4	12	43	40	38	11	16	1
$p_T(D)$	3	7	8	2	6	79	12	4
$p_T(\ell D)$	41	17	30	2	49	22	9	4
$d_0(\ell)$	10	92	75	27	30	4	95	2
$m(\ell D)$	2	3	50	61	48	69	16	42
$L_{xy}(\ell D)$	48	23	41	12	32	69	29	0.07
$L_{xy}(D)$	23	88	69	99	95	47	87	2
$L_{xy}(D \text{ to } \ell D)$	61	29	6	13	17	89	24	2
$p_T(\pi^*) > 0.4 \text{ GeV}$	28	42	21	70	38	1		
$d_0(K)$	68	72	83	54	74	15	17	72
$\Delta R(\ell D)$	34	29	26	51	86	33	57	30
$\Delta R(\ell K)$	17	12	33	66	38	2	29	2
$p_T(K)$	22	20	49	52	83	10	25	15
lone πp_T	90	20	14	59	2	8		
$p_T(\pi)$ (2 per event)							67	64

Matching χ^2 probability (in %) between data and Monte-Carlo for several kinematic variables and for the different channels.

MC predictions of yields:

$$R_{D^{+}/K\pi} \equiv \underbrace{\frac{N(B \rightarrow D^{+}l\bar{\nu}X, D^{+} \rightarrow K^{-}\pi^{+}\pi^{+})}{N(B \rightarrow D^{*+}l\bar{\nu}X, D^{*+} \rightarrow D^{0}\pi^{+}, D^{0} \rightarrow K^{-}\pi^{+})}, \qquad R_{K3\pi/K\pi} \equiv \frac{N(D^{*+}l\bar{\nu}X, D^{*+} \rightarrow D^{0}\pi^{+}, D^{0} \rightarrow K^{-}\pi^{+})}{N(D^{*+}l\bar{\nu}X, D^{*+} \rightarrow D^{0}\pi^{+}, D^{0} \rightarrow K^{-}\pi^{+})}$$

Two methods (a,b) to
derive this BR

b) Based on exclusive $B \rightarrow D^{(*)+}l\nu, D^{**}l\nu$

	$R_{pred.}$	R_{data}	$R_{pred.}/R_{data}$
$R_{D^+/K\pi}$			
data (sans D_s)		3.71 ± 0.08	
Method (a)	3.31 ± 0.58		0.89 ± 0.16
Method (b)	$3.23 \pm 0.29 \pm ?$		$0.87 \pm 0.08 \pm ?$
$R_{K3\pi/K\pi}$			
data		0.77 ± 0.02	
	0.80 ± 0.04		1.04 ± 0.06

MC/data comparison with π^* : PV and BV

Relative efficiency correction:

Efficiency corrections:

Backup slides:

Backup slides:

Fraction of Tracks with >= 3 Axial hits vs P_t (RS)

