

LBNL CDF Program at the Tevatron

Angela Galtieri

LBNL Director Review November 6–7, 2002

Outline

- Accelerator Status
- The CDF II Detector
- LBNL Group Responsibilities
- Silicon Detectors
 Run IIa
 Run IIb
- Current Activities
 Silicon Tracking
 b-tagging
- Physics Program
 B Physics
 EWK (W/Z/Top)
 Higgs
 New Physics
- Summary

installing silicon tracker, prior to detector roll-in

Run II Accelerator Status

- Run II Upgrades: 5x10³² cm⁻² s⁻²
- Main Injector (2001)
- Recycler (2003): recover antiprotons
- Bunches baseline 36x36 at 396 ns ultimately 132 ns (??)
- $\sqrt{s} = 1.96 \text{ TeV}$
- Current performance 3.6 x 10³¹ cm⁻² s⁻¹
- Integrated luminosity
 120 pb⁻¹ delivered
 CDF: 80 pb⁻¹ on tape

The CDF II Detector

Tracking system is all new, new Plug Calorimeter, improvements to all the other detectors

- New wire drift chamber, COT (96 layers)
- Time of flight system
 - New silicon system: Double sided sensors, up to 7 layers Covers to $|\eta| = 2.0$ L00, added later, close to beam pipe (1.35 cm) for
- Silicon vertex trigger (SVT)
- New scintillating tile plug calorimeter extends to $|\eta| = 3.6$
- Larger muon coverage

resolution

Detector Commissioned. Taking physics data

Members of the LBNL Group

Physicists-Staff (6.5 FTE)

P. Calafiura +

W. Carithers ++

R. Ely (retired)

A. Galtieri (Group leader)

M. Garcia-Sciveres*

C. Haber*

Y.K. Kim (UC Berkeley)

J. Lys *(retired)

R. Miquel**

M. Shapiro* (UC Berkeley)

J. Siegrist* (UC Berkeley)

W. Yao**

Physicists-Term (5.5 FTE)

A. Cerri

A. Dominguez

J. Nielsen

B. Orejudos

L. Vacavant

I. Volobouev

Fellows (2 FTE)

C. Currat

M. Weber

Visitor (gone)

P. Maksimovic (JHU)

Grad. Students

T. Affolder ('96 Run II/I)

A. Connolly ('96 Run II/I)

G. Veramendi ('98)

H.C. Fang ('98)

E. Brubaker ('99)

H. Bachacou ('99)

A. Gibson ('00)

J. Muelmenstaedt ('02)

J. Freeman ('00)*

<u>Undergrad. Students</u>

L. Tompkins

B. Mishek (gone)

* ATLAS, ** PDG, + NERSC, ++ SNAP

Engineers, Designers

B. Krieger

H. von-der-Lippe

J.P. Walder

E. Mandelli

B. Holmes

Leadership roles at CDF

- Marjorie Shapiro
 - Offline Project Manager (March 98–October 2001)
 - Co-coordinator: CDF simulation group (since October 2001)
 - Co-coordinator: B physics group (since January 2002)
- Young–Kee Kim
 - Associate Head of CDF
 Operations Department (to Dec. 2001)
 - in charge of commissioning
 - setting milestones, schedule and priorities
 - daily operations
 - L3 Subgroup co–leader (now)

- Bill Orejudos
 - Co-coordinator of the COT group
 - CDFII Operation Manager (to June 02)
- Alex Cerri
 - Co-coordinator of the Semileptonic B physics group
- Weiming Yao
 - Co-coordinator : Higgs Physics group
- Aaron Dominguez
 - Co-coordinator: silicon performance
 - Co-coordinator: b-tagging group
- Lina Galtieri
 - Co-coordinator: Jet corrections group
- Greg Veramendi
 - Co-coordinator: High Pt Electrons gr.

LBNL Contributions to CDFII

I. Construction

Silicon detectors

- ➤ SVX3 chip (co-design with FNAL), test, probe
- ➤ hybrids for L00, SVXII, ISL
- > associated electronics

• COT

- inner cylinder, field sheets
- > conceptual design of alignment
- ➤ time calibration system

TOF

- Study laser calibration system
- ➤ Install fibers, online monitoring

II. Commissioning

- Associated Project Manager (YK Kim)
- COT Commissioning (Orejudos)
- Silicon commissioning (Affolder, Dominguez, Nielsen)

III. Detector Operation (ongoing)

- CDF II Operation Manager (Orejudos)
- Online silicon monitoring (H. Bachacou)
- Offline Silicon calibration (Nielsen,pager)
- Online data monitoring (YMON) (Gibson)
- SVT operation (Cerri, pager)
- COT calibration (Orejudos, pager)

IV. Computing and software

- Project manager (M. Shapiro)
- Codgen for relational data bases
- Data handling software for early tests
- Muon reconstruction software

Ongoing responsibilities

- Simulation co-convener (M. Shapiro)
- > MC generators : ISAJET (L. Galtieri), HERWIG, Wbbgen (J. Lys)
- Silicon Code librarian (A. Dominguez)
- Silicon Tracking (W. Yao)
- > Secondary vertices code (W. Yao)
- > Passive material (L. Vacavant)

Status of Run IIa Si Operation

M. Garcia-Sciveres, J. Nielsen, H. Bachacou, I. Volobouev

Number of integrated modules (11/4/02)

L00	71/72	98.6%
SVX	332/360	92.5%
ISL	122/148	83.1%

L00: noise pick up, read all channels

SVX: 1 wedge (5/360) has a missing control signal.

Experienced failures in power connections within ladders (still at risk for more) in

about 4% of channels

ISL: cooling lines blocked. Most fixed, two left to fix, need a week shutdown.

Many of the non-integrated modules can be fixed.

Details of SVX failures (see backup plot if interested)

- ◆ 13 analog power connections have failed: consistent with broken silver epoxy or jumper connection
 - ◆ 5 happened over a period of time
 - ◆ 6 happened during a beam accident
 - **◆** None have happened since.

Silicon detector end view

Silicon operation (cont.)

Beam accident has been understood, protection system has been installed. Connection damage not reproduced at the FNAL booster with spare ladder exposed to x100 more radiation.

- •12 digital power connections have failed
 - A failure of this type disables the stereo side of the ladder, consistent with a broken jumper connection
- task force has been studying these failures since September 30, 2002
- proposed cause is wirebond failures due to excitation of ~10KHz mechanical resonance by Lorentz forces (jumper connection at 90° to B field).
- Test done in a magnetic field with video recording: wirebonding fails as they go into resonance mode at certain frequencies. More work needed.

Is there something that can be done?

- > Can change chip operating parameter to reduce AC structure of digital current.
- > Can reduce duration of AC transients by changing readout mode. Work in progress to understand further the problem and the solution.

Impact Parameter Trigger SVT

Contributor to SVT hardware: A. Cerri SVT trigger simulation: A. Cerri

L1: COT track (XFT) with $P_T > 1.5 \text{ GeV/c}$

L2: SVT combines COT track with Si hits

4/5 SVXII hits required $(r-\phi)$.

2 tracks $P_T > 2$ GeV/c and

impact parameter $> 100 \mu m$

Missing SVT wedges (4/5 hits) reduce efficiency (9 out of 72 wedges are missing).

Some of the 9 wedges can be fixed.

80% (August), now 90%

SVX z: 6 half ladders

Run II b Silicon Tracker Upgrade

M. Garcia-Sciveres, C. Haber, M. Weber, W. Yao, L. Galtieri (physicists), A. Gibson, B. Mikesh (earlier students), J. Freeman (new student)

- For high luminosity run much of silicon tracking will not survive.
- CDF plans a change over to new silicon in 2006 with minimal interruption of running
- Simplified construction and assembly. Single sided detectors.

Layer 00 Replacement

- Most of tracker based on single "stave" design. All modules are the same, except for L0 (on the beam pipe)
- LBNL group participation:
 - ➤ LBNL-IC group leads SVX4 chip design (with FNAL and Padova).

 Chip to be used by both CDF and D0
 - **► SVX4 testing and irradiation**
 - **➤ Design, prototyping of hybrid**
 - ➤ On—stave bus cable: design, prototype and testing
 - ➤ Systematic studies of electrical performance of "stave" concept.

Contributions to Run IIb Silicon

SVX4 chip

- Complete simulation and verification of the SVX4 chip performed at LBL
- Full chip submitted (engineering run) on April 1, 2002, returned in June.
- Worked after 24 hours of arrival
- Extensive testing and radiation studies done. D0 physicist participated at LBNL
- **◆** Few modifications necessary. Expect new submission at end of January.

nuary.

Hybrids Prototyping

- Based on technology used for L00 in Run IIa(BeO substrates): simple design, minimize components and assembly steps.
- Only two types of Hybrids (13 types in Run IIa)
- Prototypes built and tested, working as expected.

Contributions Run IIb Silicon

LBNL "stave" concept

Highly integrated electrical, mechanical & cooling unit (66 cm long).

Stave Bus

 Stave contains integrated data+ power bus, serving all hybrids/sides.
 Prototype fabricated and tested at LBL

Status and plans:

- SVX4 preproduction chip to be submitted early 2003.
 Initial testing at LBNL.
 Wafer probing at FNAL.
- Hybrid prototypes with SVX4 chip to be assembled and tested.
 - Hybrid production being organized.
 - Hybrid burn-in to be done at UC Davis.
- Stave Bus work at LBNL.
- Study of stave electrical performance to continue at LBNL.

Responsibilities: Silicon system

Online monitoring: <u>I. Volobouev, H. Bachacou</u> Offline Calibration: <u>I. Volobouev, J. Nielsen</u>

The 722432 channels must be monitored and calibrated for each run.

- SVXMON is a very important tool to detect detector problems.
- Also used to RESET the silicon DAQ when front end chips loose pipeline syncronization. (see diagnostic below)

- > 234M events with silicon data, to be used for physics analyses, have been processed so far
- ➤ 171 sets of constants have been provided. This system is setup so that most of the operations are automatic
- > Pedestals very stable with time.
- ➤ Calibrated channels (11/4/02)

L00	13.6K/13.8K	98.1%
SVX	374.8K/405.5K	92.4%
ISL	251.9K/303.1K	83.1%

Responsibilities: Silicon Tracking

- Weiming Yao: outside—in track reconstruction (default CDF tracking)
 - •Begin with COT tracks.

J/ψ mass

•Add Silicon hits in $r-\phi$ and then z.

Unbiassed residuals MC Data Resolution Resolution (μm) (μm) 11.6 ± 0.7 12.7 ± 0.5 8.6 ± 0.2 8.6 ± 0.2

B lifetime in run II from J/ψ data. Tails well fit on both sides

Responsibilties: b-tagging

A. Dominguez (co-cordinator of b-tag group), Yao, Bachacou

- Optimize the run I algorithm SECVTX (done by Weiming Yao)
- Data sets used: inclusive electrons trigger (P_T>9GeV), jet events.
- "Good run" selection done.
- Track quality cuts completed: COT requirements, SVX requirements.
- Studies of error assignment to track parameters.
- Tuning of Monte Carlo tracking efficiency and error matrix to data
- Realistic Monte Carlo: takes into account variation with time of detector components (i.e. SVX ladders)
- Compare impact parameter and its resolution to Monte Carlo

Hot off the presses:

Inpact parameter and its significance for electron sample. Very good agreement with MC

(Weiming Yao)

Calorimeter Simulation Tuning

Charles Currat, Henri Bachacou, Erik Brubaker, Marjorie Shapiro

Tuning parameterized (fast) simulation – EM and hadronic calorimeter e.g. Electrons and π^{\pm} responses : simulation vs test beam results (plug)

Very good agreement in 8–250 GeV range

For pions the EM and the HAD distributions are tuned separately

LBNL Group Physics Program

EWK/Top/Higgs Physics

- People: Bachacou, Brubaker,
 Currat, Dominguez, Garcia-Sciveres,
 Galtieri, Gibson, Kim, Lys, Nielsen,
 Orejudos, Siegrist, Veramendi,
 Volobouev, Yao
- Physics Interest:
 - M_{top}
 - The flagship analysis, to be done by the whole Top group.
 - Top: σ , ratio of σ 's, spin correlation, and W couplings
 - $\sigma(W) , Z : A_{FB} \text{ at } s > M_Z^2$
 - Higgs Searches: SM and SUSY
 - New particle Searches

B Physics

- People : Cerri, Fang, Miquel, Muelmenstaedt, Shapiro, Vacavant
 Physics Interests :
- V_{cb} and Semileptonic Decays
 Major LBL goal for Spring 2002
 Address timely issues in CKM mat.
 Can be used for B_s when more data
- B_s mixing
 Requires several 100 pb⁻¹

Technique to be validated via B_d mixing measurements

Emphasis for spring 2002:

Optimization of tagger

B_s mass reconstruction

B Physics

M. Shapiro, Cerri, Fang, Miquel, Muelmenstaedt, Vacavant

Silicon Vertex Trigger (SVT) revolutionizes B Physics at CDF Essential for planned program including CP violation and B_s mixing

- SVT allows study of the hadronic decays $B \to hh$ and $B \to D_s \pi$
- B_s , Λ_B , B_c unique to the Tevatron
- Factor 3 improvement in semileptonic yields

- First full hadronic B signals
- Good signal to noise
- Yield low in first 10 pb⁻¹:partial Silicon coverage and SVT trigger non-optimized (expect x3).

SVT Trigger: Charm Physics

First CDF measurement of a charm decay branching ratio

- $\Gamma(D \to KK)/\Gamma(D \to K\pi) = (11.18 \pm 0.48 \pm 0.98)\%$ (PDG: 10.83 \pm 0.27)
- Main systematic (8%): background subtraction (work in progress).
- $\Gamma(D \to \pi \pi)/\Gamma(D \to K\pi) = (3.37 \pm 0.20 \pm 0.16)\%$ (PDG: 3.76 \pm 0.17)
- several ~2% systematics
- This charm measurement has pushed the state of the art on modeling SVT sculpting. Important simulation work for B physics program and high PT b jet triggers.

B Physics: current program

Current focus of LBNL B group: Semileptonic decays

- In 100 pb⁻¹ (Spring Conference) expect:
 - 3 Million B→ lepton + track events with 90% purity
 - 20K $B \rightarrow D^0 + l + X$
 - 10K $B \rightarrow D^* + l + X$
 - 1K $B \rightarrow D + l + X$
- Sample Selection and trigger modeling
- Study of D** production and measurement of hadronic mass moments
- Flavor tagging optimization
 - Use l + SVT track trigger (high statistics)
 - Measure B_d mixing
 - Amplitude of oscillations gives tagger quality (εD²)
 - x_d measurement checks systematics on modeling of trigger and decays, as well as decay length reconstruction

Online (SVT)-vs-Offline(SVX) d0

B Physics: Moment Analysis

- ◆ Measurement of V_{cb} from inclusive semileptonic rate:
 - OPE provides expansion in terms of $\alpha_{_{\! S}}, \Lambda_{_{\scriptscriptstyle QCD}}/m_{_{\scriptscriptstyle b}}$, ...
- ◆ To make a measurement to better than 5%, must understand effects of hadronic physics.
- Need comparison of theory and experiments for many quantities: build confidence in predictions by testing them
- ◆ Theory does not provide detailed knowledge of hadronic states, but make prediction for inclusive quantities, e.g.

these are the "hadronic mass" moments

- ◆ To measure these moments, need to map out spectrum of hadronic decays.
- ◆ Also, must fit for non-resonant contributions.
- ◆ Goal: first CDF measurements by Spring 2003
- ◆ This measurement will help reduce systematics on B⁺/B⁰ lifetime measurement

High P_T Physics Activities

Bachacou, Brubaker, Currat, Dominguez, Garcia-Sciveres, Galtieri, Gibson, Kim, Lys, Nielsen, Orejudos, Siegrist, Veramendi, Volobouev, Yao

Transition from detector studies and tools development to physics analysis is occurring now.

Plans for the Winter Conferences:

- ➤ W cross section, Z asymmetry
- > Top cross section and mass measurement
- MSSM Higgs search
- ➤ Heavy long lived particles (CHAMP) search

Contributing to different areas:

- Contributing to different areas:
 Electrons: data sample, ID criteria, E scale, trigger
 Tracking: track reconstruction code, Silicon performance and track efficiency optimization
- > b tagging: optimization of secondary vertex finding in jets for top and Higgs physics

(G. Veramendi)

➤ Jet corrections: calorimeter E—scale to be kept stable within 1% $Z \rightarrow b$ -bar for jet E-scale improvement.

$W \rightarrow e \nu \text{ cross section (ICHEP)}$

Y. K. Kim, Veramendi, Brubaker, Gibson, Tompkins and ETF group

• W cross section measurement

$$\sigma_{W}^{*}BR(W)en (nb) = 2.60\pm0.07_{stat}\pm0.11_{syst} \pm0.26_{lum}$$

Consistent with Run I results, rescaled for the E=1.96 GeV.

(use Sterling et al. NNLO predictions

Candidate sample: 5547 events

Background (8%):

– QCD: $260 \pm 34 \pm 78$

-**Z** → **ee**: 54 ± 2 ± 3

 $-W \rightarrow \tau v: 95 \pm 6 \pm 1$

$Z \rightarrow e^+ e^-$ Asymmetry (ICHEP)

Y. K. Kim, Veramendi, Brubaker, Gibson, Tompkins

•Asymmetry of $Z \rightarrow e^+ e^-$ at the Tevatron is expected to agree with LEP measurement. the Standard Model predicts AFB at all M(e+e-).

Uncorrected Z → e⁺ e⁻shown at left Measurements compared with PYTHIA/CTEQ5L below.

Top Quark property Measurements

Bachacou, Brubaker, Galtieri, Gibson, Kim, Lys, Volobouev, Yao

Short term goal:

- Top cross section and mass measurement.
- The Standard Model predicts the Higgs mass, once the W and Top mass are measured with high precision.

• In Run II we need to improve on the systematic error, need to start

work on this immediately. $M(top) = 174.3 \pm 5.1 \text{ GeV CDF+D0 comb.}$

Top Physics Studies

t tbar Production at the TeV:

t tbar
$$\rightarrow$$
 W $^+$ bW $^-$ b

Final states (2 B-jets + Ws):

- dilepton (2 W→ln)
- lepton+jets (W→ln,W→qq)
- all hadronic (2 W→qq)

Lepton + jets channel preferred:

statistics advantage over the dilepton, less background then the all hadronic 2 (3) signatures: lepton and 1 (2) b jets

Sample is the same as W sample.

Top events are preferentially in $W+\geq 3$ jets

Studies needed:

subtract background from lepton ID b—tagging (to reduce background) precision jet E—scale

Top Physics at CDF

First step is optimal event selection (W events) Removal of:

conversion electrons, photon events, Z electrons

B-tagging in jets is a good signature

Use control samples to evaluate efficiency Compare data and Monte Carlo to check that MC has predictive power for top events

Jet energy scale systematics: major contribution to top mass uncertainty.

Min bias events: determine calorimeter stability Jet events: determine Plug–Central relative correction

 $Z \rightarrow bbar$: improve absolute jet energy scale

$Z \rightarrow b$ -bbar (will provide a large sample of b jets):

Zbb trigger, requiring two tracks in opposite hemisphere.

B group two track trigger requires two tracks in same hemisphere

Preliminary trigger studies

Jet E_T-Scale Studies

Galtieri (Co-convener jet correction group), Currat, Lys

- Electron scale in central calorimeter CEM correct within 1% ($Z \rightarrow e e$)
- Hadronic scale now kept within 1% with Run I (MIP peak in $Z\rightarrow \mu\mu$, J/ψ)
- γ-jet balance can test **jet** scale, since EM scale is correct.
 MC studies needed to minimize QCD effects (K_T kick) (Jeremy Lys)
 Preliminary result: absolute scale known within 6% in Central

Plug E-scale determined from jet-jet balance

Studying plug calorimeter gain changes at high eta.

Higgs search

Yao (co-convener of the Higgs group), Dominguez, Nielsen

Standard Model Higgs needs large accumulated luminosity, improved jet resolution, understanding of backgrounds etc. Long range.

LEP II Searches : M_{Higg} > 113 GeV at 95%CL LEP II Hint at Mh_{igg}= 115 GeV

SUSY Higgs can have a large cross section for large values of tanβ. A modest luminosity can provide interesting limits.

 $A/H \rightarrow \tau\tau$, bb are the channels to study

SUSY Higgs A/H in \tau, bb

Run Ib Amy Connolly's PhD Thesis

 $s(gg\ 0\ A/H) = 25\ pb\ for\ M(A) = 100\ GeV\ tan\beta = 30$

Run Ib data: high Pt lepton triggers

0.05
0.04
0.03
0.02
0.01
0.02
0.01
0.02
0.01
0.02
0.01
0.02
0.01

Results will be available soon

M(tt) will be an essential discriminant.

Run II: A. Dominguez, E. Brubaker

Use bbA/H final state. Trigger studies are being done. Many triggers contribute. Tools for analysis (b-tagging etc.) ready.

Charged Massive long-lived Particles

Bill Orejudos (ICHEP)

• CHAMP candidates SUSY: stable stau, stop

Stau mass

- 4th generation quarks
- Implemented into MC
- CHAMP property studies
 - Isolation, TOF, COT dE/dx

- Trigger proposed: L1 2–tracks above 10 GeV/c
- Analysis based on flight time for massive particles
- TOF difference for a CHAMP of 200 GeV and a deuteron (MC)
- Muon trigger used below: 16.5 pb⁻¹ of data

Background region: P_T track=20–40 GeV

Require TOF difference Δt>1 ns

Find: 2.2 ± 0.8 events

Summary

- Detector commissioning is almost completed. Performance optimization is still going on.
- •Tools for physics analysis are now ready: tracking, exploitation of the SVT trigger, electron ID, jet corrections, b-tagging, simulation tuning etc.
- Now pursuing the physics. LBNL group plans to have results on the following analyses for the Winter Conferences (some with collaborators):
 V_{cb} CKM matrix element
 MSSM Higgs

W cross section, Z asymmetry
Top cross sections +mass measurement

Long lived particle search

- Run IIb silicon detector work proceeding well SVX4 chip: first submission of the chip worked!
 - Submit preproduction chip early next year
 - Hybrids prototypes worked first time. Stave prototype looks good.
 - Hybrid production being organized

SVXII Ladders

SVX-II Ladder Power Distribution

