

Systematics on Top Mass due to Jets

Lina Galtieri

Top Mass Workshop, June 24–25, 2003

How do you go from 9 to 5 GeV and then down to 2-3 GeV???

Mass systematics for tagged events

Jet systematics: Run I and II

Major questions in present corrections studies

Can we improve absolute and out–of–cone corrections?

Erik's talk (6/11) : Nev = 11ev $N_b = 2.1 \text{ ev} \quad 72 \text{ pb}-1$

7 (4 jets) + 4 (3.5 jets).

Systematic	Value	Comments	Run I *
Jets	7.9 GeV	Will decrease—Run I–II	4.1 GeV
		discrepancy partly unders.	
ISR/FSR	2.6 GeV	From Run I	1.6 GeV
Generators	1.8 GeV	George/Guram (pre-tagged analysis)	0.5 GeV
PDFs	0~2 GeV	Statistics limited	0.5 GeV
Bkgd shape	0.5 GeV		0.3 GeV
B-tagging	0.1 GeV	Run I SVX only	0.4 GeV
Total	8.8 GeV		4.5 GeV

* Run I b-tags: 20 SVX (N_b= 2.2 ev) + 14 SLT (N_b = 5.6 ev) 14 (4 jets) + 6 (3 jets) 8 (4 jets) + 6 (4 jets)

Run I

Run II (Erik's talk)

Sys	Tagged		Tagged, ignoring tags	
	Median	Gaussian	Median	Gaussian
Relative	3.77	3.79 +/- 0.24	3.77	4.05 +/- 0.25
Energy Scale	4.45	4.15 +/- 0.23	5.45	5.73 +/- 0.25
Absolute	2.17	1.93 +/- 0.24	2.41	2.41 +/- 0.28
Underlying Energy	-0.49	-0.31 +/- 0.23	-0.48	-0.52 +/- 0.25
Out-of-Cone	1.21	1.20 +/- 0.23	1.88	1.84 +/- 0.25
Splash-out	1.15	1.26 +/- 0.24	2.00	1.64 +/- 0.25
Relative (data)	0.91	1.11 +/- 0.25	1.56	1.46 +/- 0.28
Cal Stability (data)	0.99	1.07 +/- 0.26	1.12	0.88 +/- 0.29
Energy Scale (data)	4.87	4.71 +/- 0.25	5.23	5.29 +/- 0.28
Total	1000	7.94 +/- 0.72		9.61 +/- 0.79
-(13)		6.39 +/- 0.68		8.02 +/- 0.74

All levels of jet corrections systematics:

- except cal. stability, mult. int. should be 0 for MC.
- add systematics for levels 1-3 as applied to data.

The corrections applied to raw cluster energies are :

 $P_T(R) = (P_T^{raw}(R) \times f_{rel} - UEM(R)) \times f_{abs}(R) - UE(R) + OC(R).$ (10)

Here $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ is the cone radius chosen for the jet measurement; R=0.4 for top analysis. The corrections are:

- f_{rel}, the relative energy scale. Corrects for non-uniformities in calorimeter response as a function of η.
- UEM(R) subtracts the energy due to the additional interactions in the event.
- $f_{abs}(R)$, the absolute energy scale. Maps the raw jet energy observed in a cone of radius R into the average true jet energy. This average is determined in the central calorimeter assuming a flat P_T spectrum.
- UE(R) takes into account the energy due to the underlying event. In Run I
 minbias events were used for this correction.
- OC(R), corrects for the energy expected to be outside the radius R.

The $f_{abs}(R)$ and OC(R) corrections are functions of the transverse momentum of the jet. The relative correction has only a weak dependence on jet P_T .

Systema	tics(Winter C	Conferenc	es)		
Comparison wit	% CDF–	6419	BERKELEY LAB		
0.1	Relative	Relative Corrections			
0.08	8% now	η range	MC	data	
		0.0-0.1	2%	2%	
-julian -	3.5% Run I	0.1 - 0.8	0.2%	6 0.2%	
al syste		0.8 - 1.4	4%	15%	
		1.4 - 2.0	4%	4%	
Run I systematic	>2.0	7%	7%		
Jerr (Geve)	Run I	Run II data		Run II MC	
Calorimeter stability	1%	1%		_	
Raw Jets E-scale	<u> </u>	5%		5%	
Relative correction	(0.2 to 4)%	(0.2 to 7)%		(0.2–15)%	
Absolute corr. (+UE)	(2.8 to 2.4)%	(2.8 to 2.4)%	6	_	
UEM (UE mult. int.)	100 MeV/vertex	100 MeV/ve	rtex	_	
OOCC (8 to 55, >55)	(7 to 1.4)%	(7 to 1.4)%		_	
Splash–out	1 GeV	1 GeV			

Lina Galtieri Systematics from Jet corrections, Top Mass Workshop, Lake Geneva, 24–25 June 2003

Plug systematics

JetAna: dijet balance

0.2

0.1

-0.1

V4.10.4, Currat

alu B-04

Systematics on relative corrections set by difference between data and MC Crack (WHA) disagreement still large Peculiar shape of simulation for $|\eta| > 1.4$ linear rise between 1.4 and 2.4

Info comes from γ -jet balance.

See 5% (now 3%) difference from Run I not cone dependent (CDF-6280)

Plug MC: linear rise here as well WHA region agrees with di-jet balance

MC-data disagreement in central: R=1.0 Smallest disagreement R=0.4 Largest disagreement What can it be:

underlying event jet shapes, i.e., need to tune parton shower and fragmentation Raw jets, γ -jet balance

Corrected jets show a cone dependence as well:

R=0.7 is OK in central R=0.4 is higher in MC R=1.0 is lower in MC

Pt dependence of γ -jet balance possibly due to threshold effects (MC is not flat)

Understand 5% (now 3%) shift in raw E-scale

Understand Monte Carlo cone dependence in gam-jet balance (central calorimeter) is it a generator problem (jet shapes)? Was underlying event tuned for R=0.7 only? WHA simulation Plug simulation : strange eta dependence

In principle we should do better in Run II:

Tower corrections done more often on line. Offline correction done when needed {Beate's code).

See Beate's talk on plans for the jet correction group

Sys errors from absolute and out of cone

Corrections are the same size. Systematics on absolute corr. are larger Can we improve and how?

Sys. from Absolute correction include: Calorimetry: cracks, non linearity, response across wedge, pion and e response etc Fragmentation tuning: can we use COT+SVX tracking?

Improve Sys on absolute corrections: Z –jet balance (light q jets) γ–jet balance (light q jets) double tags (light q jets) Z to b–bbar (Tommaso's talk) (b jets)

Z -jet balance Data and MC comparison

Run I Analysis

Uses bisector technique

 $\Delta F = (3.2 \pm 1.5 \pm 4.1)\%$

Run II Initial data-MC comparison

YKK+Erik (in progress) No bisector analysis Very different cuts PT(Z) >15 GeV

Double tagged events: t+tbar $\rightarrow W(\rightarrow jet jet) b + W(\rightarrow l v) b$

Run I result: 9 events with 2 big-tags

CDF–3543, Wilkinson, Hollebeck

 $\Delta M = (-2.5 \pm 8.8)\%$

 $MW = 78.1 \pm 4.4 \pm 2.9 \text{ GeV}$

Dijet mass of untagged jets in events with a b tag and a second loose tag let energy shift vs. median returned W mass Q. 15 CDF PRELIMINARY 110 pb -Shaded: non-top background 0.1 Dotted: top 175 MC + ba 3.5 3 0.05 2.5 -0.05 1.5 -0. 0.5 150 200 250 50 100 300 Dijet Mass (GeV/c**2)

2 fb–1 expect factor 50 in yield (luminosity, acceptance, better b–tagging) $\sigma = 8.8\%/\sqrt{50} = 1.25\%$ on E–scale (from 2.5%)

Lina Galtieri Systematics from Jet corrections, Top Mass Workshop, Lake Geneva, 24–25 June 2003

Run I OC systematics study CDF-3253 (LG/Lys)

Lina Galtieri Systematics from Jet corrections, Top Mass Workshop, Lake Geneva, 24–25 June 2003

Plan is to reduce the systematic error from 5.1 to 3.0 GeV

•We used three channels, major systematic error is from jets (>3.8 GeV)

Major challenge: reduce jet systematics

reduce ISR, IFR (better understanding/tuning of MC)

Use other fitting tecniques to reduce the effect of the systematics