

Improvements in the Calorimeter Simulation

Pedro A. Movilla Fernández (LBNL)

Jet Energy and Resolution Group Mini-Workshop Sep 14th, 2005

Overview

- 1) Preliminary results for tuning of the hadronic lateral shower profile:
 - central calorimeter
 - track momentum range 0.5-24.0 GeV/c
 - parametrization in Gflash: see gfinha.F, gfshow.F
 - tuning samples:

data: JET_CALIB (gjtc0d), 16 M events

MC: FakeEv, 1 track/event, flat spectrum,

 $\pi^{\pm}/K^{\pm}/(p,\overline{p})=60\%/30\%/10\%$, weighted with data spectrum

- 2) Cross-check of single particle responses:
 - data: JET_CALIB vs. Minbias
 - MC: FakeEv vs. PYTHIA Minbias (current tuning)
- 3) Tuning of the plug simulation
- 4) Conclusions

Track Selection

Quality cuts

- N_{vtx} = 1
 |z_{vtx}| < 6cm, |z₀| < 6cm (0 < p < 8 GeV/c)
- $|z_{vtx}| < 60$ cm, $|z_0| < 60$ cm (8<p<24 GeV/c)
- 7x7 isolation
- CES isolation

Numl	per of I	nits	
COT		Silicon	
ax	st	ax	
30	30	-	tower 1-8
25	25	-	tower 9
20	20	4	tower 10-11

tower	momentum range (GeV/c)										
number	≥ 2	0.5-2	2-3	3-5	5-8	8-12	12-16	16-24	>24		
0	101906	329537	11846	64676	16578	8015	629	116	45		
1	109072	345385	12726	68439	17704	9262	754	147	39		
2	114259	359959	13951	69419	18595	11170	914	169	41		
3	115352	365974	15181	65847	19720	13125	1195	245	37		
4	114795	366485	16870	59926	21898	14185	1582	280	52		
5	118292	380410	20126	53818	26544	15038	2242	463	61		
6	119588	388367	23670	47028	30777	14460	2977	597	76		
7	126830	427403	30812	42726	34770	13728	3907	802	85		
8	96483	445245	38401	26230	21509	7066	2636	566	72		
9	55529	439577	38101	14241	2607	444	90	38	7		
10	78510	501283	52699	21349	3754	570	94	32	8		
11	121194	552756	78114	34826	6926	1050	195	65	13		

plus contour cut for lateral profile:

require track within inner 0.6x0.6 of target tower

used for tuning

gjtc0d

Lateral Profile Tuning Results

Hadronic lateral profile

$$f(r) = \frac{2 r R_0^2}{(r^2 + R_0^2)^2} \qquad \langle R_0(E, x) \rangle = R_1 + Q x$$

$$Q = R_2 - R_3 \log(p/\text{GeV})$$

- Tighter vertex cuts (p<8GeV/c) improves tune quality of HAD and agreement between HAD and EM
- Shower core R₁(HAD) at p<2.5 GeV/c roughly consistent with old tune.
- EM and HAD seem to prefer different optimal core values at very low momenta:
 - Shower extrapolation effects? Cutoff artefacts?
- Consistent picture at higher momenta.
- Need to combine green and red curve reasonably.
 - Use average of green and red points at low p and use red points at high p>6GeV/c.
- Subdominant spread term Q(p) is very weakly constrained: need to shift R₁ to higher values (0.35) to extract some reasonable p dependence.

Cutoffs used: $R_0^{max} < 1.4$, $x^{max} < 2.0$

weighted momentum bins

(R1,Q)-Scans 2-3GeV/c

(R1,Q)-Scans 3-5GeV/c

(R1,Q)-Scans 5-8GeV/c

(R1,Q)-Scans 8-12GeV/c

(R1,Q)-Scans 12-16GeV/c

(R1,Q)-Scans 16-24GeV/c

Tuning @ p=0.5-3GeV/c

- NB: EM more important at low p.
- Average may be useful:
 R₁= const ~ 0.3, or a decreasing curve in-between intersecting the red curve at intermediate momenta
- Compromise gives acceptable agreement between data and MC

0.5-2.0 GeV/c

2-3 GeV/c

Tuning @ p=3-24GeV/c

- Fix HAD profiles by more stringent constraint coming from the EM compartment
 R₁= const = 0.194
- Seems to work reasonable in particular at higher momenta

0.1

Cross-Check of Data Samples

Isolated track spectra, central:

- JET_CALIB and Minbias data
- w/o reweighting discrepancies between data samples around trigger thresholds 4, 7 GeV/c expected

Absolute Response vs. Data Samples

FakeEv / gjtc0d

- Remember: Gen-5 JES uncertainty for p<12GeV/c claimed to be 2%.
- FakeEv does not follow the structure in the data around 6 GeV.

gjtc0d / gjtc01 / gmbs0d

- JET_CALIB: gjtc0d (16M), gjtc01 (1.3M)
- Minbias: gmbs0d (13M of 21M) suffer from too low single track statistics at p>6GeV/c
- Reasonable agreement within statistical uncertainties. Structure in gjtc0d around 6GeV/c "consistent" with other data samples.

Lateral Profile vs. Data Samples, Central (1)

Unweighted lateral profiles:

EM/p by η (cor, 0.5<=p< 2.0): central

EM/p by η (cor, 2.0<=p< 3.0): central

0.5-2.0 GeV/c

HAD/p by η (cor, 0.5<=p< 2.0): central

HAD/p by η (cor, 2.0<=p< 3.0): central

TOT/p by η (cor, 0.5<=p< 2.0): central

TOT/p by η (cor, 2.0<=p< 3.0): central

Lateral Profile vs. Data Samples, Central (2)

HAD/p by η (cor, 5.0<=p< 8.0): central

Cross-Check of MC Samples, Central

MC shown in the following are based on old tuning!

FakeEv(weighted) / Pythia Minbias (pydj000)

- Reasonable consistency within statistical uncertainties.
- FakeEv somewhat better than Pythia MB (probably due to due to reweighting).
- PYTHIA Minbias sample suffer from too low statistics at p>6GeV/c.

Cross Check of MC Samples, Central (2)

Cross Check of MC Samples, Central (3)

Tuning in the Plug

- We are using IO tracks in the plug to minimize
 E/p bin migration effects, using target towers
 13-15 (see my Simulation Group talk 8/11)
- Central and plug response agree qualitatively.
- Plug tuning in the past was based on Minbias data and MC. We want to switch to FakeEv to have more efficient production of high P tracks.

FakeEv vs. JET_CALIB

Pythia MB vs. JET_CALIB

But... FakeEv disagrees with Pythia MB w.r.t. absolute response...

Plug Lateral Profiles: FakeEv vs. Pythia MB

2-3 GeV/c

8-12 GeV/c

Note that Pythia MB profiles (tuned to p<2.5GeV/c data) are again too narrow at high p.

...and also disagrees w.r.t. lateral response

- discrepancy can not be handled by normalization

Plug Backround Response

- FakeEv and Pythia MB have very different background scenario.
- Background contribution in the plug is much larger than in the central!
- Unfortunately we still don't use PES to reduce non-corrigible background (next page).

Plug Lateral Profiles: Background

Example: Consider three FakeEv versions.

FakeEv ... plain version with charged particles

FakeEv MB ... FakeEv + Minbias

FakeEv Pi0 ... FakeEv + π^0 component collinear to (1/p² spectrum, 30% probability)

- N.B.: the above histograms are <u>corrected</u> lateral responses:
 - background estimate: E/p of "near" and "far" block within same $\boldsymbol{\varphi}$ strip
- By adding background the profile can almost arbitrarily be shaped. Improved PES simulation (Gen-6) is expected to reduce this effect.
- For the plug we should probably use a reasonable physics model that we trust (Pythia MB?)

Conclusions

- Tuning significantly improves simulated lateral response in the central part up to 20 GeV/c.
- New profiles are <u>broader</u> at high momenta. This will help to reduce current OOC uncertainty δ_{OOC} :
 - OOC flow in Gen-5 simulation has deficit w.r.t. data.
 - Sources: modelling of hadronization + shower profile
 - This deficit enters directly into definition of δ_{OOC} .
- Refinements planed for central part (deadline 12/1):
 - Optimize Gflash shower cutoffs.
 - Include recent/ongoing single track trigger data.
 - Introduce η dependence (target towers 0, 1-4, 5-8).

Gen-5 OOC energy flow difference DATA minus MC

- Cross checked E/p responses (absolute, lateral) with different data and MC samples – expectedly no surprises.
- Will start plug tuning soon:
 - Same philosophy but probably using Pythia instead of FakeEv.