Standard Model Measurements : (EWK and Top Physics)

Marjorie Shapiro (UC Berkeley & LBNL) presenting results from ATLAS, CMS, LHCb, and D0 plus new Tevatron averages

10 July 2017

The Role of SM Measurements in Hadron Colliders

- Confront SM in regions of calculational complexity
 - Higher order corrections
 - EW corrections with (N)NLO QCD
 - Resummation techniques
 - Merging of pQCD and parton showers
- Constrain (or observe) new physics contributions via virtual corrections or modified gauge couplings
 - \blacktriangleright Precision measurements of Top and W mass
 - Anolomous rates for Triple and Quartic gauge interactions
- Provide accurate and precise predictions of background rates for BSM searches and for Higgs measurements
 - Top pairs and Vector Boson+Jet events often most important backgrounds
 - Tails of distributions and production with additional objects (heavy flavor, additional jets, vector bosons) often important

Standard Model Landscape

- Achievements in Experiment and Theory
- Recent Cross Section Measurements
 - Top
 - W and Z bosons
 - Multiboson final states

- Search for New Physics Via Virtual Corrections
 - W mass
 - top mass
 - ► $\sin^2 \theta_W^{eff}$
- Gauge Boson Vertices and Limits on Anomolous Couplings
- Conclusions

Technical Advances: Experiment

Maintaining Calibrations with High Pileup

Mean Jet Mass as function of # primary vertices

Reconstructing Tracks in Dense Environments

dE/dx used to identify clusters originating from multiple tracks

Improved Trigger Performance

Technical Advances: Theory

N³LO Perturbation Theory

Higgs Boson gluon-fusion production at N'LO Scale uncertainty: 3% hactor of a reduction over N'LO Amstasticu et al Phys. Rev. Leti 114, 212001 (2015)

https://indico.cem.ct/event/588781/contributions/2547586/attachments/1453677/2242861/talk20170504-revised.pdf

NLO+EW Corrections

NLO QCD+EW Corrections for V+Jets including off-shell decays and Multijet Merging

Kallweit et al JHEP 04 (2016) 021

Improved Treatment of Parton Showers

Top Cross Section: $\sigma_{t\bar{t}}$ vs \sqrt{s}

- Measurements in many channels yield consistent results
- Full NNLO+NNLL Calculation:

High precision \Rightarrow

 $\sigma_{t\bar{t}}$ provides information on:

- Gluon PDF at high x
- Top mass (more later)

Short 5.02 TeV pp run (heavy-ion reference)

- Combine dilepton and single lepton channels; Single lepton channel categorized by # b-jets
- $W \rightarrow jj$ contribution obtained from $\Delta(r_{jj})$

ATLAS dilepton $e\mu$: Phys Lett. B761 (2016) 136

Fit $\sigma_{t\overline{t}}$ and ϵ_b using # b-jets

CMS dilepton *e*µ: EPJC 77 (2017) 172

Count events after background subtraction

CMS lepton+jets: arXiv:1701.06228

Likelihood fit in 11 categories

New for EPS:

ATLAS Inclusive $t\overline{t}$ cross section in ℓ +Jets (8 TeV) ATLAS-CONF-2017-054

Top Cross Section: Probing Kinematic Extrema

Large Pseudorapidity

- Unique measurement from LHCb in forward region $2.2 < \eta < 4.2$
- Select ℓ + 2 Heavy Flavor jets
- Multi-dimensional fit to m_{jj} and 3 multivariate distributions separate:
 - \blacktriangleright $t\bar{t}$
 - $W + c\overline{c}$
 - $\blacktriangleright W + b\overline{b}$

Large Transverse Momentum

- Data softer than predictions of NLO Monte Carlo generators
- NNLO calculation significantly improves agreement
- Some tension between ATLAS and

CMS measurements

$t\overline{t} + X$ Overview

- $t\bar{t}$ production with additional objects probes top couplings
- Highest profile example: $t\bar{t} + H$
- Significant challenge to theory
 - Multi-scale problem: large logs
 - Precision matters

Of increasing importance with large data samples

$t\bar{t}$ + Heavy Flavour (HF)

- Correct modelling of $t\bar{t}$ + HF essential
 - Detailed comparisons of differential distributions of data and MC required
- $\sigma(t\bar{t} + HF)$ measured at 8 TeV (ATLAS and CMS) and 13 TeV (CMS)
- Good agreement among measurements
- Data consistent with predictions of several event generators

Differential tt + b and tt + bb measurements

Comparisons with many theory predictions

Top+Vector Boson Production

- 13 TeV measurements from ATLAS and CMS
- $\sigma(t\overline{t}+Z)$: extraction of ttZ coupling
- $\sigma(tt + W/Z)$: sensitive to BSM physics (eg vector-like quarks)
- Current comparisons to NLO QCD. But improved calculations available:
 - NLO QCD+EW corrections
 - ► NLO+NNLL

No discrepancies with SM (to date)

- $\sigma(tZq)$ sensitive to WWZ triple gauge couplings and tZ coupling
- tZ constrained by $t\overline{t}Z$
- Multivariate technique to isolate signal
- New for EPS:

 4.2σ evidence for t-channel tZq: $\sigma(tZq) = (600 \pm 170 \pm 140) \; {\rm fb}$

Single Top Production

- Three production channels
- Extraction of *σ* relies on multivariate techniques
- All channels observed at 7 TeV and 8 TeV
- First measurements of t-channel and *Wt* at 13 TeV

arXiv:1612.07231

$$|V_{tb} \cdot f_{LV}|^2 = \frac{\sigma^{obs}}{\sigma^{theory}}$$

f_{LV} : Form Factor for BSM contributions

Consistent with $f_{LV} \cdot V_{tb} = 1$

ATLAS+CMS Preliminary	LHC <i>top</i> WG	May 2017						
$ f_{12}V_{1b} = \sqrt{\frac{\sigma_{meas}}{\sigma_{c}}}$ from single top quark production								
σ _{thee} : NLO+NNLL MSTW2008nnlo PRD 83 (2011) 091503, PRD 82 (20 PRD 81 (2010) 054028	10) 054018,							
$\Delta \sigma_{\text{theo}}$: scale \oplus PDF		10101 0100						
m _{top} = 172.5 GeV		$ f_{LV}V_{tb} \pm (meas) \pm (theo)$						
t-channel:								
ATLAS 7 TeV' PRD 90 (2014) 112006 (4.59 fb ⁻¹)	⊢ •+-•	$1.02 \pm 0.06 \pm 0.02$						
ATLAS 8 TeV ^{1,2} arXiv:1702.02859 (20.2 fb ⁻¹)		$1.028 \pm 0.042 \pm 0.024$						
CMS 7 TeV JHEP 12 (2012) 035 (1.17 - 1.56 fb ⁻¹)	H	$1.020\pm 0.046\pm 0.017$						
CMS 8 TeV JHEP 06 (2014) 090 (19.7 fb ⁻¹)	⊢ <mark>let l</mark>	$0.979 \pm 0.045 \pm 0.016$						
CMS combined 7+8 TeV JHEP 06 (2014) 090	Field	$0.998\ \pm 0.038\ \pm 0.016$						
CMS 13 TeV ² arXiv:1610.00678 (2.3 fb ⁻¹)	⊢ +•+1	$1.03 \pm 0.07 \pm 0.02$						
ATLAS 13 TeV ² JHEP 04 (2017) 086 (3.2 fb ⁻¹)	⊢→ +=+→→1	$1.07 \pm 0.09 \pm 0.02$						
Wt:								
ATLAS 7 TeV PLB 716 (2012) 142 (2.05 fb ⁻¹)		$1.03 + 0.15 \pm 0.03 - 0.18 \pm 0.03$						
CMS 7 TeV PRL 110 (2013) 022003 (4.9 fb ⁻¹)	⊢−−+ ₽+−−−4	1.01+0.16+0.03 -0.13-0.04						
ATLAS 8 TeV ^{1,2} JHEP 01 (2016) 064 (20.3 fb ⁻¹)	r r r	$1.01 \pm 0.10 \pm 0.03$						
CMS 8 TeV ¹ PRL 112 (2014) 231802 (12.2 fb ⁻¹)	1 - 1 - 1	$1.03 \pm 0.12 \pm 0.04$						
LHC combined 8 TeV ¹³ ATLAS-CONF-2016-023, CMS-PAS-TOP-15-019	₽ _+ ▼+−1	$1.02\pm 0.08\pm 0.04$						
ATLAS 13 TeV ² arXiv:1612.07231 (3.2 fb ⁻¹)		1.14 ± 0.24 ± 0.04						
s-channel:								
ATLAS 8 TeV ³ PLB 756 (2016) 228 (20.3 fb ⁻¹)		$0.93 ^{+0.18}_{-0.20} \pm 0.04$						
		1 including top-quark mass uncertainty $^{2}\sigma_{neo}$: NLO PDF4LHC11 3 NPP5205 (2010) 10, CPC191 (2015) 74 including beam energy uncertainty						
Levelser								
0.4 0.6 0	.8 1 1.2	1.4 1.6 1.8						
f _{LV} V _{tb}								

W Production and PDFs

LHC 13 TeV Kinematics

da/d|n| [pb

//hoar

- Calculated to NNLO
- W^+/W^- asymmetry: difference in uand d PDFs
- LHCb reduces d PDF uncertainty by $\sim \frac{1}{2}$ for $x \sim 0.2$

NNPOF3.1 (ethal)

- $\sigma(W)$: constrains *s*-quark content $r_s = \frac{s+\overline{s}}{\overline{s}+\overline{d}} \sim 1$
- Similar trend from W + c production
- Some tension between collider and other data (eg ν -scattering)

γ/Z Production

CMS-PAS-SMP-16-009

- Drell-Yan cross section well described by NLO and NNLO theory over full mass range
- Modelling of $P_T(Z)$ requires soft-gluon resummation (eg ResBos)
- $p_T(Z)/p_T(W)$ reasonably well described
- High precision measurement of p_T(Z) an important input to W-mass measurement

JHEP 02 (2017) 096

Vector Bosons at Large Rapidity

LHCb: $p_T^\ell > 20~{\rm GeV},~2 < \eta^\ell < 4.5$

Z Production

LHCb, $\sqrt{s} = 13 \text{ TeV}$

JHEP 09 (2016) 136

Consistent with modern PDFs

Search for New Physics Via Virtual Corrections: M_W vs M_t

 Gauge sector of SM constrained by 3 parameters:

W

$$\begin{aligned} \alpha &= 1/137.035999139(31) \\ G_F &= 1.16637(1) \times 10^{-5} \text{ GeV}^{-2} \\ n_Z &= 91.1876(21) \text{ GeV} \end{aligned}$$

• At leading order:

H

$$m_W \sin^2 \theta_W \frac{\pi \alpha}{\sqrt{2}G_F} \quad \sin^2 \theta_W = 1 - m_W^2 / m_Z^2$$

• HO corrections modify this:

$$m_W \sin^2 \theta_W \frac{\pi \alpha}{\sqrt{2}G_F} \frac{1}{1 - \Delta r}$$

Precision measurements of m_t and M_W sensitive to presence of new particles in loops

W Mass: First LHC Measurement

 $m_W = 80370 \pm 7(\text{stat}) \pm 11(\text{exp sys}) \pm 14(\text{modelling sys}) \text{ MeV}$

- $= 80370 \pm 19 \text{ MeV}$
- Use low pile-up $\sqrt{s} = 7$ TeV data
 - Huge effort to control systematic uncertainties
- Uncertainty comparable to previous best measurement from CDF
- Expect future improvements
 - Larger statistics 8 TeV and 13 TeV samples
 - Reduction of modelling uncertainies (theory and W kinematics (eg p_T^W)
- But higher pileup will be a challenge!

arXiv:1701.07240

Direct Measurements of the Top Mass

ATLAS+CMS Preliminary LHCtopWG	m _{top} summary, √s = 7-8 TeV	May 2017						
World Comb. Mar 2014, [7] stat total uncertainty	total stat							
m _{top} = 173.34 ± 0.76 (0.36 ± 0.67) GeV	ming ± total (stat ± syst)	S Bel.						
ATLAS, I+jets (*)	172.31 ± 1.55 (0.75 ± 1.35)	7 TeV [1]						
ATLAS, dilepton (*)	173.09 ± 1.63 (0.64 ± 1.50)	7 TeV [2]						
CMS, I+jets	173.49 ± 1.06 (0.43 ± 0.97)	7 TeV [3]						
CMS, dilepton	172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [4]						
CMS, all jets	173.49 ± 1.41 (0.69 ± 1.23)	7 TeV [5]						
LHC comb. (Sep 2013)	173.29 ± 0.95 (0.35 ± 0.88)	7 TeV [6]						
World comb. (Mar 2014)	173.34 ± 0.76 (0.36 ± 0.67)	1.96-7 TeV [7]						
ATLAS, I+jets	172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [8]						
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [8]						
ATLAS, all jets	175.1 ± 1.8 (1.4 ± 1.2)	7 TeV [9]						
ATLAS, single top	172.2 ± 2.1 (0.7 ± 2.0)	8 TeV [10]						
ATLAS, dilepton	172.99 ± 0.85 (0.41 ± 0.74)	8 TeV [11]						
ATLAS, all jets	173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [12]						
ATLAS comb. (June 2016) H+H	172.84 ± 0.70 (0.34 ± 0.61)	7+8 TeV [11]						
CMS, I+jets HHH	172.35 ± 0.51 (0.16 ± 0.48)	8 TeV [13]						
CMS, dilepton	172.82 ± 1.23 (0.19 ± 1.22)	8 TeV [13]						
CMS, all jets	172.32 ± 0.64 (0.25 ± 0.59)	8 TeV [13]						
CMS, single top H + H	172.95 ± 1.22 (0.77 ± 0.95)	8 TeV [14]						
CMS comb. (Sep 2015) HH	172.44 ± 0.48 (0.13 ± 0.47)	7+8 TeV [13]						
(*) Superseded by results (*) shown below the line (*) shown below the line (*)	6-004F-0015-846 [3] ATL/85-004F-2815-102 [6-004F-9015-877 [7] #78v1-400-4827 [12 (2810) 755 [9] Gai Phys.LOS (2910) 300 [7 49 J. UTV (2014) 2020 [8] Gai Phys.LOS (2910) 500 [19] J. UTV (2014) 2020 [9] Gai Phys.LOS (2910) 500 [9] [9] ATL/85-004F-2016 [9] [9] [9] [9] [9] [9] [9] [9] [9] [9]	11] Phys.L. 81 5751 (2015) (26 12] #55(5302.01546 12] Phys.Rev.D33 (2016) 120204 14] #55(5303.02530						
165 170 175	o 180	185						
m _{top} [GeV]								

- ATLAS and CMS in good agreement:
 - $m_t^{\text{ATLAS}} = 172.84 \pm 0.70 \text{ GeV}$
 - $m_t^{\rm CMS} = 172.44 \pm 0.48 \; {\rm GeV}$
- Some tension with Tevatron average: $m^{\text{Tev}} = 174.30 \pm 0.65$ CeV

$$m_t = 174.30 \pm 0.05 \text{ GeV}$$

- $m_t^{CDF} = 173.16 \pm 0.95$
- $m_t^{D0} = 174.95 \pm 0.75$

Recent Results:

ATLAS: All hadronic $\sqrt{s} = 8$ TeV

Measurements of the Top Quark Pole Mass

FERMILAB-CONF-16-383-PPD

- Most precise m_t measurements from direct mass reconstruction
 - m_t^{direct} MC generator scheme dependent
 - Can differ by 1 GeV from m_t^{pole}
- m_t^{pole} obtained from $\sigma_{t\bar{t}}$ and its differential distributions
 - Sensitive to order of calculation and choice of PDF
 - ▶ NLO \rightarrow NNLO: Scale Uncertainty 10% \rightarrow 5%

New for EPS: ATLAS m_t^{pole} from 8 TeV dileptons (using NLO prediction)

 $m_t^{pole} = 173.2 \pm 1.6 \,\,\mathrm{GeV}$

Fit to 8 differential distributions

(NNLO kinematic dist. not yet available)

19 / 27

Building for the Future: $\sin^2 \theta_W^{\rm eff}$

- $p\overline{p}$: A_{FB} as fn of $m_{\ell\ell}$ New from D0 ($\mu\mu$): 0.23016 \pm 0.00064 New Tevatron Average: 0.23148 \pm 0.00033 (FNAL-CONF-17-201-E)
- pp: Z boost preferentially selects direction of valence quark

New from CMS (8 TeV $ee + \mu\mu$): 0.23101 ± 0.00052

- Best measurements remain LEP+SLD: ±0.00016
- Uncertainties for LHC measurements will decrease as $\int \mathcal{L}$ increases

Diboson Production

- Test of NLO EW corrections and NNLO QCD calculation
- Sensitive to new physics from triple gauge couplings
 - No single channel sensitive to all possible BSM contributions
- Large number of measurements
- Agreement with SM good to date
 - See next page for example aTGC limits
- Increased luminosity of Run2 and beyond will further improve precision

aTGC Limits from Diboson Production: WWZ Vertex

March 2017	Central	ATLAS			(_	
	Fit value	LĔP H-	Channel	Limits	JLdt	<u>Vs</u>	
Δĸ-			WW	[-4.3e-02, 4.3e-02]	4.6 fb	7 IeV	
<u> Anz</u>		, -	ww	[-2.5e-02, 2.0e-02]	20.3 fb	8 IeV	
		· · · · · · · · · · · · · · · · · · ·	WW	[-6.0e-02, 4.6e-02]	19.4 fb	8 leV	
			WZ	[-1.3e-01, 2.4e-01]	33.6 fb	8,13 lev	
			WZ	[-2.1e-01, 2.5e-01]	19.6 fb ⁻	8 TeV	
			WV	[-9.0e-02, 1.0e-01]	4.6 fb	7 TeV	
			WV	[-4.3e-02, 3.3e-02]	5.0 fb]	7 TeV	
		H 1	WV	[-2.3e-02, 3.2e-02]	19 fb ⁻¹	8 TeV	
		⊢	WV	[-4.0e-02, 4.1e-02]	2.3 fb ⁻¹	13 TeV	
		⊢ •−-1	LEP Comb.	[-7.4e-02, 5.1e-02]	0.7 fb ⁻¹	0.20 TeV	
2		H	WW	[-6.2e-02, 5.9e-02]	4.6 fb ⁻¹	7 TeV	
ΛZ		H	WW	[-1.9e-02, 1.9e-02]	20.3 fb ⁻¹	8 TeV	
		H	ww	[-4.8e-02, 4.8e-02]	4.9 fb ⁻¹	7 TeV	
		He-I	WW	[-2.4e-02, 2.4e-02]	19.4 fb ⁻¹	8 TeV	
		H	WZ	[-4.6e-02, 4.7e-02]	4.6 fb ⁻¹	7 TeV	
		н	WZ	[-1.4e-02, 1.3e-02]	33.6 fb ⁻¹	8,13 TeV	
		H	WZ	[-1.8e-02, 1.6e-02]	19.6 fb ⁻¹	8 TeV	
		H 1	WV	[-3.9e-02, 4.0e-02]	4.6 fb ⁻¹	7 TeV	
		H	WV	[-3.8e-02, 3.0e-02]	5.0 fb ⁻¹	7 TeV	
		н	WV	[-1.1e-02, 1.1e-02]	19 fb ⁻¹	8 TeV	
		H	WV	[-3.9e-02, 3.9e-02]	2.3 fb ⁻¹	13 TeV	
		⊢ ●–1	D0 Comb.	[-3.6e-02, 4.4e-02]	8.6 fb ⁻¹	1.96 TeV	
		⊢ ●–1	LEP Comb.	[-5.9e-02, 1.7e-02]	0.7 fb ⁻¹	0.20 TeV	
A mZ			WW	[-3.9e-02, 5.2e-02]	4.6 fb ⁻¹	7 TeV	
∆g_		i 🛏 i	WW	[-1.6e-02, 2.7e-02]	20.3 fb ⁻¹	8 TeV	
- 1			WW	[-9.5e-02, 9.5e-02]	4.9 fb ⁻¹	7 TeV	
		· ⊢•–	WW	[-4.7e-02, 2.2e-02]	19.4 fb ⁻¹	8 TeV	
			WZ	[-5.7e-02, 9.3e-02]	4.6 fb ⁻¹	7 TeV	
		с і щі і	WZ	I-1.5e-02, 3.0e-021	33.6 fb ⁻¹	8.13 TeV	
		i i i i i i i i i i i i i i i i i i i	WZ	I-1.8e-02, 3.5e-021	19.6 fb ⁻¹	8 TeV	
			WV	[-5.5e-02, 7.1e-02]	4.6 fb ⁻¹	7 TeV	
		i Hili	WV	[-8.7e-03, 2.4e-02]	19 fb ⁻¹	8 TeV	
			WV	I-6.7e-02, 6.6e-02]	2.3 fb ⁻¹	13 TeV	
		· · · · · · · · · · · · · · · · · · ·	D0 Comb	[-3.4e-02, 8.4e-02]	8.6 fb ⁻¹	1.96 TeV	
		H-+	LEP Comb.	[-5.4e-02, 2.1e-02]	0.7 fb ⁻¹	0.20 TeV	
				1	01/10	1	
		0		0.5		1	
				aTGC Limits @95% C.L			

See https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC for additional results

Isolating EW Single and Di-boson Production with 2 Jets

- Can use LHC as a boson-boson collider
- Single W/Z production through Vector Boson Fusion (VBF) and diboson production through Vector Boson Scattering (VBS)
 - Sensitive to new physics in the 3 or 4 boson vertex
- VBF and VBS tagged by presence of 2 jets at large separation in rapidity
 - ► Colorless objects in scattering ⇒ low jet activity in central region
 - Large m_{jj} for leading two jets
- QCD production defined as "background"

Probing Anomolous Couplings: EW X+2 Jets

- VBF signals observed in many channels
- Measurements exist at 7, 8 and 13 TeV
- All results consistent with SM
- Limits on anomolous couplings set

Quartic gauge coupling constraint from $m-Z\gamma$

Triple gauge coupling constraints from $\boldsymbol{W} \boldsymbol{j} \boldsymbol{j}$

Observation of EW Boson Scattering

- Observation of Vector Boson Scattering a milestone in studies of EW
 Sector
- S:N for EW:QED production for same-sign W scattering
 - First 5σ observation of $W^{\pm}W^{\pm}jj$ EWK production
 - Discriminating variable: m_{jj}
- First studies of ZZjj EWK production
 - Larger contributions from Strong production in this channel
- Rich program of precision measurements anticipated with larger datasets available in the future

Summary and Conclusions

- Outstanding performance of LHC collider and experiments
 - ► Large data samples collected, with timely analysis underway
 - Techniques to mitigate pileup in place and working
- Large integrated luminosity enables:
 - Exploration of differential distributions in a variety of kinematic regimes
 - $t\bar{t}$ and $t\bar{t} + X$
 - Bosons and Dibosons
 - Observation of exciting low cross section processes
 - VBF production in many channels
 - First 5σ measurement of Vector Boson Scattering
 - Precision measurements to constrain virtual corrections
 - Top mass in many channels
 - First W mass measurement at the LHC
 - Progress on measurements of weak interaction parameters
 - Major advances in techniques for theoretical calculations
 - Control of uncertainties in challenging regions of phase space
- We are still at the beginning
 - Current data samples only $\sim 2\%$ of expectations for HL-LHC

Exciting times to come!

New Results for EPS

ATLAS

- ATLAS-CONF-2017-031: ZZ cross-section measurements and aTGC search in 13 TeV collisions with the ATLAS detector
- ATLAS-CONF-2017-044: Measurement of lepton differential distributions and the top quark mass in tt̄ production in pp collisions at √s = 8 TeV with the ATLAS detector
- ATLAS-CONF-2017-048: Measurement of inclusive-jet and dijet cross-sections in proton-proton collisions at sqrt(s)=13TeV centre-of-mass energy with the ATLAS detector
- ATLAS-CONF-2017-049: Measurement of Tau Polarisation in Z/gamma*-tautau Decays in Proton-Proton Collisions at sqrt(s)=8 TeV with the ATLAS Detector
- ATLAS-CONF-2017-052: Measurement of the production cross-section of a single top quark in association with a Z boson in proton-proton collisions at 13 TeV with the ATLAS detector
- ATLAS-CONF-2017-054: Measurement of the inclusive $t\overline{t}$ cross-section in the lepton+jets channel in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector
- ATLAS-CONF-2017-056: Direct top-quark decay width measurement in the $t\bar{t}$ lepton+jets channel at $\sqrt{s} = 8$ TeV with the ATLAS experiment
- ATLAS-CONF-2017-059: First measurement of isolated

photon plus jet production in pp collisions at $\sqrt{s} = 13$

TeV with the ATLAS detector

- LHCb
 - https://arxiv.org/abs/1707.01621 Observation of the

- CMS
 - CMS-PAS-TOP-16-014: Measurement of the differential cross sections of top quark pair production as a function of kinematic event variables in pp collisions at √s = 13 TeV
 - CMS-NOTE-TOP-2017-004 Object definitions for top quark analyses at the particle level
 - CMS-PAS-SMP-16-010: Measurement of the differential jet production cross section with respect to jet mass and transverse momentum in dijet events from pp collisions at \sqrt{s} = 13 TeV
 - CMS-PAS-SMP-16-007: Measurement of the weak mixing angle with the forward-backward asymmetry of Drell-Yan events at 8 TeV
- D0
 - D0-CONF-1650: Measurement of the Effective Weak-Mixing Angle
- Tevatron Combination
 - FNAL-CONF-17-201-E: Combination of the CDF and D0 effective leptonic electroweak mixing angles

doubly charmed baryon