Simple and Complex Objects: Strategies for Event Reconstruction at the LHC

Lecture I: Reconstructing Simple Objects

Marjorie Shapiro UC Berkeley/LBNL August 10

The Experimental Challenge:

Translate From:

To:

Pattern of digitized hits in a complex detectors

Interpretation in terms fundamental hard scattering process

Overview of Lectures:

Lecture 1: Reconstruction of Simple Objects

- Collider Basics
 - Rates and Cross Sections
 - Choice of Coordinates
 - Min Bias, Underlying Event
- Reconstruction Strategies
- Object Reconstruction Part I
 - Tracks
 - Jets
 - Charged Leptons: electrons

Lecture 2: Confronting the SM

- Object Reconstruction Part II
 - Charge Leptons: μ and τ
 - Neutrinos (and LSP)
- Finding W's and Z's
- Top

Lecture 3: TeV Scale Physics

- Object Reconstruction Part III
 - Photons
- Higgs
- SUSY

Collider Basics I: Cross Sections

- Rates Determined by:
 - Hard Scattering σ
 - Parton Luminosity
- QCD Processes Dominate
 - EW rates lower by $\alpha \, / \alpha_{_{strong}}$
- Cross Sections Decrease Rapidly with s
 - Heavy particles difficult to produce

Implications for LHC

- Something happens every crossing
 - ⁻ 25 inelastic evts/crossing at 10³⁴ "Pile-up"
- Must Select Events of Interest: Trigger
 - Must know what you've thown out
 - Analysis must be trigger-aware
- Jets Dominate Hard Scattering Rate
 - Can isolate EW processes <u>only</u> they have something besides jets, eg leptons
 - Potential source of bckgnd "Fakes"
 - Detector mis-measurements can induce false signals
- W, Z: Bckgnd for Top, Higgs, SUSY

Analysis Strategy: Begin With Largest Cross Section and Work Down

- Characterize Bulk of Cross Section "Soft Physics"
 - Tracks
- Identify Dominant 2 \rightarrow 2 QCD Processes

- Jets

• Develop Strategies for Selecting EW Processes

- e, μ, τ, ν. γ

Reconstruct Heavy Objects Produced Strongly

- Top, SUSY(?)

Understand Discovery Potential for Low Rate EW Processes

- Higgs

Soft Physics

- Bulk of Inelastic Cross Section: Large Impact Parameter, Soft Collisions
- Low Momentum Transfer \rightarrow Cannot Use Perturbative QCD
 - Fireballs
 - Regge Theory
 - Multiple Parton Interactions
- Qualitative Features:
 - Limited P_{T} wrt Beamline

- Longitudinal Distribution Dominated by Phase Space

Consider the Invariant Phase Space Factor:

$$\frac{d^{3}\mathbf{P}}{\mathbf{E}} = \mathbf{d}\phi \frac{\mathbf{d}\mathbf{P}_{T}^{2}}{2} \frac{\mathbf{d}\mathbf{P}_{\parallel}}{\mathbf{E}}$$

$$\mathbf{E} \frac{d\sigma}{d^{3}\mathbf{P}} = \frac{1}{\pi} \frac{d\sigma}{\mathbf{d}\mathbf{P}_{T}^{2} \mathbf{d}\mathbf{y}}$$
Where: $\mathbf{y} = \frac{1}{2} \ln \left(\frac{\mathbf{E} + \mathbf{P}_{\parallel}}{\mathbf{E} - \mathbf{P}_{\parallel}}\right)$ "rapidity"
 $\mathbf{d}\mathbf{y} = \frac{d\mathbf{P}_{\parallel}}{\mathbf{E}}$
Note: $\mathbf{y}' = \mathbf{y} - \mathbf{y}_{f}$ where $\mathbf{y}_{f} = \mathbf{tanh}^{-1} \left(\frac{\nu}{c}\right)$ - relativistic boost
 $\mathbf{y} \sim -\ln \left(\tan\frac{\theta}{2}\right) \equiv \eta$ - "pseudo-rapidity"

Natural Variables to Described Particle Production: P_{τ} , η , ϕ

Particle Production in "Min Bias" Events

Particle Product Flat in η and increases ~ $ln(E_{CM})$

At large E_{CM} high P_{T} tail \rightarrow onset of Hard Scattering

Some Comments on Pile-up

- At LHC expect $dN_{ch}/d\eta \sim 6.5$ for min bias
 - Haze of additional particles at low P_{τ}
 - Makes pattern recognition difficult
 - Degrades calorimeter resolution
- Probability of a second hard scatter event very small, even at full luminosity
- Can significantly effect measurements where we sum over a large number of detector cells (eg Total Energy in Calorimeter)
- Reduce sensitivity by requiring a minimum energy per cell

Underlying Event and Initial State Radiation

 Hard Collision leaves remnants of incoming p's moving in Beam Direction

 "Initial State" gluon radiation largely co-linear with incoming partons: same basic structure

Beam Remnants

Soft particles distributed uniformly in η

Track Distributions from Underlying Event

Look at 90° from jet direction

Approx constant Particle multiplicity
Energy density increases with hard scattering scale

Stages of Object Reconstruction

- Interpretation of Digitized Channel Info as Hits
 - Combine neighboring channels (clustering)
 - Transform coordinates (time-to-distance, local-to-global)
- Feature Extraction in Individual Sub-Systems
 - Pattern Recognition
- Fitting
 - Determine energy, momentum and/or position
- Correlating Among Sub-Systems
 - Track extrapolation to calorimeter, muon systems
- Refining Object
 - Best estimate of parameters using all information

Comments on Object Reconstruction

- Strategies may be detector and application specific
 - Trigger reconstruction: "Region of Interest" driven
 - "Seeded reconstruction:" Use info from one detector as starting point for another
 - Parameters of algorithm tunable (trade-off signal:background)
- Algorithms may be iterative to improve performance
 - Position and incident angle corrections depend on track parameters
 - Calibrations may depend on interpretation (eg electrons and photons can have different calibration constants)

Offline Production

- LHC reconstruction very complex
 - Many channels, many hits: Reconstruction is slow
- Large data collection rate and large event size
 - TB of storage required
- Cannot support bulk reconstruction by individual physicists
- Organized <u>Production</u> effort

 $\mathsf{RAW} \rightarrow \mathsf{RECO} \rightarrow \mathsf{AOD} \rightarrow \mathsf{TAG} \rightarrow \mathsf{NTUPL}$

Results available through Data Delivery System

- "Analysis" is performed on output of Offline reconstruction

Output of Offline Production

- Collections of Candidate Objects
 - Tracks, Jets, Electrons, μ , τ , vertices, missing energy, heavy flavor
- Selections Performed Using Loose Criteria
 - Can tighten during analysis phase
- No attempt to uniquely identify objects
 - Same energy deposition may appear as jet, e and γ candidate
- Support for multiple algorithms
 - Best jet algorithm for Top analysis may not be the best algorithm for QCD studies

Physicists impost consistent interpretation during analysis phase

Object 1: Tracks

• Reconstruction of trajectory of charged particles

Measure:

- Momentum
- Charge
- Vertex information

Details in A. Dominguez talk Monday

Object 2: QCD Jets

• $2 \rightarrow 2$ elastic scattering of quarks and gluons

- Strategy
 - Calorimeter based pattern recognition
 - Associate tracks with the jets after calorimeter jet found
 - Primary vertex needed to calculate p₊

Comments on Jet Reconstruction

- Quarks and Gluons are colored objects: Hadrons are not
 - Mapping of collections of particles to partons is tricky
 - Many experimental and theoretical details
 - See talks from J. Huston and B Heinemann next week
- But, these lectures need to use some basic facts about jets
 - Will discuss the baseline reconstruction algorithm and leave the hard stuff for next week

Jet Reconstruction: What Variables Do We Use?

- But we don't measure P_{τ} in calorimeter
 - Make pseudo-particles from calorimeter cells
 - Project calorimeter data onto a uniform $\eta \phi$ grid
 - Treat each calorimeter cell as massless particle

Calorimeter "Tower"

Energy: From Calorimeter Direction: Project to Origin A Simple Cone Algorithm for Finding Jets (your mileage might vary)

- Jets are circles when projected in $\eta \phi$ space
- To reject fluctuations in underlying event and pileup:
 - Start with a "seed" tower above fixed E_{T} (E_{ESeed})
 - Draw a circle in $\eta \phi$ space (Cone Size: 0.4 to 1)
 - Include all towers with above a fixed E_{T} (E_{tmin})
 - Calculate E_{τ} centroid
 - Iterate list of towers until stable
- This is the "pattern recognition" phase

Defining Jet Energy and Momentum

• For our purposes, the basic definition is enough:

$$E_{jet} = \sum_{Towers} E_i$$
$$E_T = \left(\sum_{Towers} E_i\right) \sin\theta \text{centroid}$$
$$\vec{p}_{jet} = \sum_{Towers} E_i \hat{n}$$
$$p_T = \sqrt{p_x^2 + p_y^2}$$

Jets defined this way have "mass" ~ 10 GeV

Objects 3-5: Charged Leptons (e, μ , τ)

- Must extract lepton signal from much larger jet bckgnd
- Requires correlation of information among detectors
- Selected based on properties of each lepton species

Comments on Lepton ID

- Lepton ID involves simultaneous selection on a number of measurements
- Trade-off between efficiency and rejection
 - Tunable handle to customize selection to specific physics analysis
- Two approaches:
 - Cut-based algorithms: selection on fixed values for each variable
 - Neural Net or Multivariant analysis: More complex treatment of correlations

In both cases, majority of work is determining correct choice of variables and parameterizing signal and bckgnd input distributions

Physics Dependent Lepton ID Efficiencies

- Some selection variables used in lepton ID are environment dependent
 - Energy deposition in calorimeter affected by nearby tracks
- Classify leptons as isolated or non-isolated
 - Leptons produced in the decay of high mass objects are usually emitted far from other jets and leptons
 - Leptons produced in the decay of b and c quarks are usually buried in jets
- Warning: Efficiency will be P_{τ} and process dependent: more when we get to SUSY

Object 3: Electron Reconstruction

- Electrons signature:
 - Energy Deposition in EM Calorimeter
 - Track pointing at the energy deposition and with momentum consistent with calorimeter energy
 - Little or no energy in hadron calorimeter

Photon Conversions

Electron ID: Rejection of Background (I)

Choice of variables depends on detector. Some possibilities:

- Shower Shape Variables:
 - Longitudinal shape: ratio of energy in depth segments of calorimeter
 - Transverse shape: Hadron showers typically wider than electrons (also rejects $\pi^0 \pi^+$ overlap)
 - Had/EM: Expect very little energy deposit in HAD calorimeter

Some ATLAS Examples: Shower Shape Variables

Comparison of Distributions for Electrons and Jets

Electron ID: Rejection of Background (II)

- Track-Shower Matching:
 - E/P: Ratio of energy in calorimeter to momentum in tracker
 - Pointing: Compare extrapolated position of track to position of EM cluster

Caution:

- Significant material in LHC trackers means electron bremstahlung
- Correct modeling of material distribution necessary both for defining selection criteria and for estimating efficiency

E/P Distribution: ATLAS

Electron ID: Rejection of Background (III)

- Large amount of material also means photon conversions are an issue (photons from π^0)
 - Explicit removal of conversions:
 - Require hits in pixel layer (most of material outside this)
 - Look for second track from conversion: cut on reconstructed mass and angle

Electron ID: Rejection of Background (IV)

- Isolation:
 - Study ratio of energy in annulus round electron to enegy of electron
 - As noted above: Does not work for all physics processes
- Transitions Radiation and dE/dx:
 - CDF drift chamber measures dE/dx: sensitive to particle velocity: helps for low momentum e
 - Atlas tracker has TR function: Can require high energy deposition hit, at cost of efficiency

Efficiency of Electron Selection

- Measure when possible using real data:
 - W from no-track trigger to measure tracking efficiency
 - Z with one tight electron and with loose selection
- Use simulation to extrapolate kinematics and correct for environmental issues (eg isolation)

Conclusions for Today

- Successfully reconstruction of physics objects requires knowledge of QCD production
- Complexity of events, large rate and large event size means reconstruction must be done communally
- Analysis starts with collections of candidates, refines selections and imposes consistent interpretation
- Object reconstruction mirrors detector and physics signatures
 - Today: Jets and Electrons
 - Tomorrow: μ , τ , ν , W, Z, top