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* Object Reconstruction Part 2

— Charge Leptons: e, pand T

— Neutrinos (and LSP)
* Finding W's and Z's
- Z - ee, UM

- Lepton P_spectrum

- Transverse mass and W reconstruction



Where We Finished Yesterday: Lepton ID

* Must extract lepton signal from much larger jet bckgnd
* Requires correlation of information among detectors

* Selected based on properties of each lepton species
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Key:

Muon

Electron

Charged Hadron (e.g. Pion)
- Neutral Hadron (e.g. Neutro!




Object 3: Electron Reconstruction

* Electrons signature:

— Energy Deposition in EM Calorimeter

— Track pointing at the energy deposition and with
momentum consistent with calorimeter energy

— Little or no energy in hadron calorimeter
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T° and non-interacting Tt

Early showering 1T

Photon Conversions




Electron ID: Rejection of Background (1)

Choice of variables depends on detector. Some possibilities:

* Shower Shape Variables:

— Longitudinal shape: ratio of energy in depth segments of
calorimeter

— Transverse shape: Hadron showers typically wider than
electrons (also rejects 1 1t overlap)

— Had/EM: EXxpect very little energy deposit in HAD
calorimeter
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* Track-Shower Matching:

— E/P: Ratio of energy in calorimeter to momentum in tracker

— Pointing: Compare extrapolated position of track to position
of EM cluster

Caution:

— Significant material in LHC trackers means electron
bremstahlung

— Correct modeling of material distribution necessary both for
defining selection criteria and for estimating efficiency
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Electron ID: Rejection of Background (l1)

* Large amount of material also means photon
conversions are an issue (photons from 1)

— Explicit removal of conversions:

* Require hits in pixel layer (most of material
outside this)

* Look for second track from conversion: cut on
reconstructed mass and angle




Electron ID: Rejection of Background (V)

* |solation:

— Study ratio of energy in annulus round electron to enegy of
electron

— As noted above: Does not work for all physics processes

* Transitions Radiation and dE/dx:

— CDF drift chamber measures dE/dx: sensitive to
particle velocity: helps for low momentum e

— Atlas tracker has TR function: Can require high
energy deposition hit, at cost of efficiency
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Efficiency of Electron Selection
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* Measure when possible using
real data:
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— W from no-track trigger to
measure tracking efficiency
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— Z with one tight electron and
with loose selection
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* Use simulation to extrapolate
Kinematics and correct for
environmental issues (eg
Isolation) 5
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* Muon signature:

— Track passes through material
In muon filter and is
reconstructed in muon
spectrometer

— Min ionizing energy deposits
In EM ad HAD Calorimeter
- Track match between inner

tracker and muon
spectrometer




Backgrounds to Muon ID

* Decays in Flight: T and K

decays inside jets

- Fall steeply with P_

- Non-isolated

* Punchthrough

- Probability rises with P_

* |Inner Detector track matched

cavern background
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Muon ID: Rejection of Background

* Matching of track parameters between Inner Detector and
Muon system powerful at high P_

 Multiple scattering at low P_Ilimits resolution

* Verification of Min lonizing energy in calorimeter
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* Unlike e and p, T decay to hadrons
* Look like narrow jets in calorimeter
* 1 or 3 charged tracks

° May have EM energy (1°)




* Associate narrow jets in calorimeter with tracks
* Require
— Low track multiplicity

— Narrow calorimeter jet

— Track and calorimeter isolation



Tau - Fraction of energy in AR<O.1
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A Likelihood Approach to t ID

Construct variable that combines all cut variables
Compare signal and bckgnd

Can vary cut to get need rejection
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Production of W and Z Bosons

* Lowest order diagram: quark annihilation

W and Z obtain P_ via Initial state gluon emission

u u/d

N Lowest order production:
W W2 W and Z produced with O PT

d u/d



Full QCD Calculation: Boson P_ Remains Small

Z boson P after unfolding

Resbos+PHOTOS CTEQ6.1m, no small-x corr
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Reconstruction of Z Bosons

* Limited to leptonic modes unless you trigger on b-jets

* Two high P_leptons, nearly back-to-back in ¢

* Reconstruction straightforward, background small
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Again, restricted to leptonic decays

But here one of the nearly back-to-back leptons is a neutrino

How do we “detect” a particle that does not interact in our
detector?

Same technigue as we always use for v: look for momentum
Imbalance and assign the missing momentum to the v

But in hadron colliders, limited to using only the 2 transverse
components of the momentum



* Use same technique as for jets

— Create a grid of calorimeter towers

— Treat each tower as a massless particle with momentum
direction normal to the tower

Define Z;(2 vector)
ET — _ZanersEe‘Tﬁ

’ = —Y E;sin04i
Similarly total E,
Ei-' — ETDwers ‘E!r'f'|
Calorimeter “Tower® <etector _ ¥ | sin0;




Comments on Total and Missing E_ Resolution

* Calorimeter resolutions depend on energy deposition
Opr & vET
* Measurement is also sensitive to detector imperfections
(cracks) and noise
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(L0 Calenlation)

In CM frame, ¢ and v are back-to-back
and balance pr

2 i
= n-o
Pr = %%

Changing variables from cos6 to p; means

evaluating the Jacobean
1
dcos6 2 PF\°> 2
———|1—4— )] =—
dp? 3 Ky ScosB
But we know
do

— o< (1 —I—r::msﬁ)2

SO

do  1+cos?® 2(L—2p3/$)
dp? Scos© §(1—dp2/s)

bdl—



he Jacobean Peak

doc  1+cos’0

* Notice P —

Diverges for 0 =7/2 (pr = )

* Divergence results from Jacobean factor in transformation to P_

* Integration of Breit-Wigner over s removes singularity
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Transverse Mass

* W P_affect e and v by same boost

* Define e-v transverse mass:

: AR, Ly V|2 Sf | oyl
my = |pr|"+|prl” = (Fr +Pr)
do Ia’n‘

5 1 e
dm;  dp;

* m_sensitive to transverse boosts only at second order

e But I\/IT IS more sensitive to detector resolution than PT

of the lepton
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W Mass: Analysis Strategy

Use well measured Z to calibrate model of W

Calibrate E or p scale using known resonances
Measure lepton resolution using Z width
Model recoll response using Z data

Model P_distribution from Z (theory to extrapolate to W)

Likelihood fit to W mass
Apply radiative corrections

Evaluate systematics




Conclusions

* EW production can be cleanly separated from QCD
background if leptons in the final state

* Reconstructed of isolated e, y, T and v possible using a
combination of variables from several detectors

* Non-isolated leptons more difficult

Next Time:

— Top: b-jet tagging
— Higgs: photons
— SUSY: Everything together




