Searching for New Physics at the LHC: Run 2 Status and Prospects Marjorie Shapiro

University of California, Berkeley and Lawrence Berkeley National Laboratory

University of Toronto, March 2015

Searching for New Physics at the LHC: Run 2 Status and Prospects

- Introduction
- Run-1 (2009-2013)
- Future Plans
- Conclusions

Thanks to Beate Heinemann whom I have borrowed material from

The Universe is a Laboratory

Pictures of the early Universe

But Laboratory Measurements Can Also Tell Us About the Universe

Neutrino interaction from SuperKamioKande (from sun)

Matter-antimatter asymmetry from Babar (accelerator based)

Description of Early Universe Requires Knowledge of Particles and Interactions that Existed

LHC Plays Especially Critical Role

- Highest Achievable Energy:
 - Reproduce conditions of early Universe
- Tev energy scale:
 - Where fundamental particles obtain their mass
- Many theories, but need data to distinguish between them

What Might We Find at the LHC?

- Answers to very fundamental and simple questions:
 - What is Dark Matter?
 - Supersymmetry?
 - Other weakly interacting particles?
 - Why is gravity so weak?
 - Supersymmetric particles?,
 - Extra spatial dimensions?
 - Why do particles have mass?
 - A single Higgs boson?
 - More complicated Higgs sector?
 - The unexpected …

The Large Hadron Collider (LHC)

Some Facts About the LHC

Proton-proton collisions

- Circumference: 26.7 km
- Magnet operating temperature: 1.9K
- Number of magnets: 9594 (1232 dipoles)
- Number of proton bunches per beam: 2808
- Number of turns per second: 11,245
- Number of collisions per sec: 600 million

The Physics of Proton Collisions

- Protons are made of partons (quarks and gluons)
 - Energy in hard scatter depends on x₁, x₂=fraction of protons' momenta carried by scattered partons
- Like Rutherford, identify high energy scatters by looking at large angles
 - Large transverse momentum (p_T)
- Highest energy collisions rare
 - Requires high intensity beams (large luminosity)

Physics Processes at Hadron Colliders

process	Rate at L _{peak} (Hz)		
any interactions	10 ⁹		
Bottom quarks	10 ⁶		
Jets with p _T >100 GeV	104		
W bosons	10 ³		
Z bosons	10 ²		
Top quarks	1		
Higgs (M=125 GeV)	0.1		
H->γγ (M=125 GeV)	2x10-4		

Physics program requires ability to study processes with rates that vary by >13 orders of magnitude!

Detectors for the LHC

- Two big general-purpose detectors
 - ATLAS and CMS
 - Similar goals, different design trade-offs
- One detector optimized to study B-hadron decays
 LHCb
- One detector optimized to study Heavy Ion collisions

– Alice

I will concentrate on ATLAS (my experiment and Toronto's)

ATLAS is BIG!

Superimpose ATLAS detector on 5 story LHC office building for scale

ATLAS is Complex!

Standard person

D712/mb-26/06/97

ATLAS Built and Operated by a Large International Team

Worldwide collaboration of over 2000 physicists and engineers

A Schematic View of How it Works

Some Pictures of ATLAS Components

Muon detector

LHC Data Taking: 2010-2012

- Integrated L: 28 fb⁻¹
 - 2010-11: 7 TeV
 - 2012 : 8 TeV
- Peak L: 7.7x10³³ cm⁻²s⁻¹
 - 20 million events/second
 - Write to disk: ~400 events/s
- Data Volume
 - 4x10⁹ events/year

Tremendous success for LHC and for the experiments Over 300 papers from each of CMS and ATLAS

Standard Model Production Cross Section Measurements

Status: March 2014

Searching for Dark Matter

What is the Dark Matter?

Standard Model only accounts for ~20% of the matter of the Universe:

Many theories predict production of dark matter particles at the LHC

Different Approaches to Dark Matter Detection

Searches for DM at the LHC:

- Comparison of experimental reach between direct detection and LHC only possible within context of a DM model
- If DM seen, use of direct and LHC measurements together powerful tool to distinguish among models
- At LHC, two basic search strategies:
 - Generic approach:
 - Look for DM recoiling against know particles
 - Characterize reach in terms on DM mass and interaction strength
 - Search within context of specific model
 - More on this when we discuss SUSY

The Generic Approach

- Apparent momentum imbalance since DM particles escape detector without interacting ("missing E_{T} ")
- Method requires high accuracy in estimating missing $E_{\rm T}$ background from SM processes

Run Number: 189090, Event Number: 2069

Date: 2011-09-10 17:17:48 CEST

Determination of Background Rates

- Most important Physics backgrounds:
 - $Z \rightarrow vv$ and $W \rightarrow \mu v$ (μ unobserved)
- Measure backgrounds using:
 - $Z \rightarrow \mu \mu$ and $W \rightarrow \mu \nu$

Results of the Dark Matter Search at 8 TeV

- Excellent description of background rate
- No evidence of DM signal

Interpreting the Measurement

- Limits provided assuming form for operator mediating DM interaction
- Same data result can be used to place limits on other models
 - Extra dimensions
 - SUSY

Supersymmetry

SUSY and Dark Matter

- Supersymmetry models provide DM candidates
 - R parity conservation: Lightest SUSY particle (LSP) stable
 - To be DM candidate must be neutral and weakly interacting
- SUSY also has strongly interacting heavier particles
 - These can be produced with significant cross sections
 - Cascade decays to the LSP

DM Çandidate

An Example SUSY Search

No evidence of signal

Another Argument for SUSY: The Hierarchy Problem

Can be solved by new physics at the TeV scale

How does SUSY Help?

- "Supersymmetric" particles
 - Each SM particle has a partner with different spin, e.g.:

SM	spin	SUSY	spin
electron	1/2	selectron	0
top	1/2	stop	0
gluon	1	gluino	1/2

- SUSY loops cancel SM loops
 - Size of loops naturally the same IF particle masses similar
 - => SUSY particles should be found at the LHC
- No (or little) tuned ad-hoc parameters needed

Current SUSY Search Limits from ATLAS

A Sta	ATLAS SUSY Searches* - 95% CL Lower Limits ATI						
	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \bar{k}_{1}^{0} \\ \bar{q}\bar{q}\gamma, \bar{q} \rightarrow q \bar{k}_{1}^{0} \\ (\text{compressed}) \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q} \bar{k}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q} \bar{k}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q q \bar{k}_{1}^{0} \rightarrow q q W^{\pm} \bar{k}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q q (\ell (\ell / \kappa / n) \bar{k}_{1}^{0} \\ \text{GMSB} (\bar{\ell} \text{ NLSP}) \\ \text{GGM (bino NLSP)} \\ \text{GGM (wino NLSP)} \\ \text{GGM (higgsino bino NLSP)} \\ \text{GGM (higgsino blsP)} \\ \text{GGM (higgsino NLSP)} \\ \text{Gravitino LSP} \end{array} $	$\begin{matrix} 0 \\ 0 \\ 1 \gamma \\ 0 \\ 2 e, \mu \\ 1 \cdot 2 \tau + 0 \cdot 1 \ell \\ 2 \gamma \\ 1 e, \mu + \gamma \\ \gamma \\ 2 e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 2-6 jets 0-1 jet 2-6 jets 0-3 jets 0-2 jets - 1 <i>b</i> 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20 20 20.3 20.3 20.3 4.8 4.8 5.8 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1405.7875 1405.7875 1411.1559 1405.7875 1501.03555 1501.03555 1407.0603 ATLAS-CONF-2014-001 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 1502.01518
3 rd gen. <u>§</u> med.	$\begin{array}{l} \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 <i>e</i> , µ 0-1 <i>e</i> , µ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	k 1.25 TeV m(k ⁰)<400 GeV k 1.1 TeV m(k ⁰)<350 GeV k 1.34 TeV m(k ⁰)<300 GeV k 1.3 TeV m(k ⁰)<300 GeV	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{array}{l} \bar{b}_1 \bar{b}_1 + \bar{b}_1 \rightarrow b \bar{x}_1^0 \\ \bar{b}_1 \bar{b}_1 + \bar{b}_1 \rightarrow b \bar{x}_1^{\bar{n}} \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 - b \bar{x}_1^{\bar{n}} \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 \rightarrow b \bar{x}_1^{\bar{n}} \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 \rightarrow b \bar{x}_1^{\bar{n}} \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{x}_1^0 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{x}_1^0 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{x}_1^0 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 - i \bar{c} \bar{c}_1 \\ \bar{c}_1 - i \bar{c}_1 \\ \bar{c}_1 \bar{c}_1 \\ \bar{c}_1 - i \bar{c}_1 \\ \bar{c}_1 \\ \bar{c}_1 \bar{c}_$	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 0-1 \ e, \mu \\ 0 \\ 1 \\ 0 \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 1-2 b ono-jet/c-ta 1 b 1 b	Yes Yes Yes Yes Yes ag Yes Yes Yes	20.1 20.3 4.7 20.3 20 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 1404.2500 1209.2102,1407.0583 1403.4853,1412.4742 1407.0583,1406.1122 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{split} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \! \rightarrow \! \ell \tilde{\nu}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \! \rightarrow \! \tilde{\ell} \nu(\ell \bar{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \! \rightarrow \! \tilde{\tau} \nu(\tau \bar{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \! \rightarrow \! \tilde{\ell}_{L} \nu \tilde{\ell}_{L} (\ell \bar{\nu}), \ell \bar{\nu} \tilde{\ell}_{L} (\ell \bar{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \! \rightarrow \! \tilde{\ell}_{L} \nu \tilde{\chi}_{1} (\ell \bar{\nu} \bar{\nu}), \ell \bar{\nu} \tilde{\ell}_{L} \ell(\bar{\nu} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \! \rightarrow \! \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\bar{\nu}), \ell \bar{\nu} \tilde{\ell}_{L} \ell(\bar{\nu} \nu) \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{2}^{0} \! \rightarrow \! \tilde{\ell}_{L} \tilde{\chi}_{1}^{0} h \tilde{\ell}_{L} h \! \rightarrow \! b \bar{b} / W W / \tau \tau / \gamma \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{3}^{0} \! \rightarrow \! \tilde{\ell}_{R} \ell \end{split} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ \gamma e, \mu, \gamma \\ 4 \ e, \mu \end{array}$	0 0 - 0-2 jets 0-2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294,1402.7029 1501.07110 1405.5086
Long-lived particles	$\begin{array}{l} \text{Direct}\tilde{x}_{1}^{\dagger}\tilde{x}_{1}^{\top}\text{prod., long-lived}\tilde{x}_{1}^{\dagger}\\ \text{Stable, stopped}\tilde{g}\text{R-hadron}\\ \text{Stable}\tilde{g}\text{R-hadron}\\ \text{GMSB, stable}\tilde{\tau},\tilde{x}_{1}^{0}\rightarrow\tilde{\tau}(\tilde{e},\tilde{\mu})+\tau(e,\tilde{\mu})$	Disapp. trk 0 trk μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - - -	Yes Yes - - Yes -	20.3 27.9 19.1 19.1 20.3 20.3	X [±] 270 GeV m(k [±] ₁)-m(k ² ₁)=160 MeV, r(k [±] ₁)=0.2 ns 8 832 GeV m(k [±] ₁)-m(k ² ₁)=160 MeV, r(k [±] ₁)=0.2 ns 8 1.27 TeV m(k [±] ₁)=100 GeV, 10 µs <r(k<sup>±)=100 GeV, 10 µs<r(k<sup>±)=100 GeV k[±] 537 GeV 10 totanβ k[±] 435 GeV 2<r(k<sup>±₁)<3 ns, SPS8 model</r(k<sup></r(k<sup></r(k<sup>	1310.3675 1310.6584 1411.6795 1411.6795 1409.5542 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{x}_1^+ \tilde{x}_1^-, \tilde{x}_1^+ \rightarrow W \tilde{x}_1^0, \tilde{x}_1^0 \rightarrow e \tilde{v}_{\mu}, e \mu \tilde{v}_e \\ \tilde{x}_1^+ \tilde{x}_1^-, \tilde{x}_1^+ \rightarrow W \tilde{x}_1^0, \tilde{x}_1^0 \rightarrow \tau \tau \tilde{v}_e, e \tau \tilde{v}_{\tau} \\ \tilde{g} \rightarrow qq \\ \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs \end{array} $	$2 e, \mu 1 e, \mu + \tau 2 e, \mu (SS) 4 e, \mu 3 e, \mu + \tau 0 2 e, \mu (SS)$	- - 0-3 <i>b</i> - - 6-7 jets 0-3 <i>b</i>	Yes Yes Yes Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	$\begin{tabular}{ c c c c c c } \hline F_r & 1.61 TeV & $\mathcal{X}_{111}^{i}=0.10, $\mathcal{X}_{132}=0.05$ \\ \hline F_r & 1.1 TeV & $\mathcal{X}_{311}^{i}=0.10, $\mathcal{X}_{10233}=0.05$ \\ \hline \tilde{q}, \tilde{g} & 1.35 TeV & $m(\tilde{q})=m(\tilde{g}), $c_{12,p}<1$ mm \\ \hline χ_1^{\pm} & 750 GeV & $m(\tilde{q})=m(\tilde{g}), $c_{12,p}<1$ mm \\ \hline χ_1^{\pm} & 750 GeV & $m(\tilde{q})=m(\tilde{g}), $c_{12,p}<1$ mm \\ \hline $m(\tilde{q})=0.2$, $m(\tilde{g}_1^{\pm}), $\mathcal{X}_{121}\neq0$ \\ \hline $m(\tilde{q}_1^{\pm})=0.2$, $m(\tilde{g}_1^{\pm}), $\mathcal{X}_{121}\neq0$ \\ \hline $m(\tilde{q})=0.2$, $m(\tilde{g}_1^{\pm}), $\mathcal{X}_{121}\neq0$ \\ \hline $m(\tilde{q})=0.2$, $m(\tilde{g}_1^{\pm}), $\mathcal{X}_{121}\neq0$ \\ \hline $m(\tilde{q})=0.2$, $m(\tilde{g})=0.2$, $m(\tilde{g})=$	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
<mark>)ther</mark>	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$ $\sqrt{s} = 7 \text{ TeV}$ full data	0 $\sqrt{s} = 8 \text{ TeV}$ artial data	2c $\sqrt{s} = 8$ full c	Yes 8 TeV data	20.3 1	خ 490 GeV m(قرأ)<200 GeV D ⁻¹ 1 Mass scale [TeV]	1501.01325

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Note: Many non-SUSY Searches (no new physics so far)

ATLAS Exotics Searches* - 95% CL Exclusion

Status: ICHEP 2014

E^{miss} $\int \mathcal{L} dt [fb^{-1}]$ Model l, γ Jets Mass limit Reference ADD $G_{KK} + g/q$ 4.37 TeV 1-2 j Yes 4.7 M n = 21210 4491 ADD non-resonant ll 2e, µ _ _ 20.3 5.2 Te\ n = 3 HLZATLAS-CONF-2014-030 ADD QBH $\rightarrow \ell q$ 1j 1 e, µ 20.3 5.2 TeV n = 61311 2006 ADD OBH 2 j 20.3 to be submitted to PRD dimensions 5.82 Te n = 6ADD BH high N_{trk} 2 µ (SS) 20.3 n = 6, M_D = 1.5 TeV, non-rot BH _ 5 7 Te 1308 4075 -ADD BH high $\sum p_T$ $\geq 1 e, \mu$ $\geq 2i$ 20.3 n = 6, M_D = 1.5 TeV, non-rot BH 1405.4254 RS1 $G_{KK} \rightarrow \ell \ell$ 2 e.u 20.3 $k/\overline{M}_{Pl} = 0.1$ 1405.4123 2.68 TeV RS1 $G_{KK} \rightarrow WW \rightarrow \ell \nu \ell \nu$ 2 e, µ 1.23 TeV Yes 47 GKK mass $k/\overline{M}_{Pl} = 0.1$ 1208.2880 Extra Bulk RS $G_{KK} \rightarrow ZZ \rightarrow \ell \ell q q$ 2 e, µ 2i/1J _ 20.3 $k/\overline{M}_{Pl} = 1.0$ ATLAS-CONF-2014-039 Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ 4 b 19.5 G_{KK} mass 590-710 GeV $k/\overline{M}_{Pl} = 1.0$ ATLAS-CONF-2014-005 Bulk RS $g_{KK} \rightarrow t\bar{t}$ 1 e, µ ≥ 1 b, ≥ 1 J/2j Yes 14.3 2.0 TeV BR = 0.925 ATLAS-CONF-2013-052 S^1/Z_2 ED 2 e, µ 5.0 $M_{KK} \approx R^{-1}$ 4.71 TeV 1209 2535 UED 2γ Yes 4.8 Compact. scale R⁻ 1.41 TeV ATLAS-CONF-2012-072 2 e,µ SSM $Z' \rightarrow \ell \ell$ _ 20.3 2 9 TeV 1405 4123 SSM $Z' \rightarrow \tau \tau$ 2τ 19.5 ATLAS-CONF-2013-066 1.9 TeV JOSOC SSM $W' \rightarrow \ell v$ $1 e, \mu$ Yes 20.3 ATLAS-CONF-2014-017 W' mas EGM $W' \to WZ \to \ell \nu \, \ell' \ell'$ 3 e. u 20.3 1.52 TeV 1406 4456 Yes EGM $W' \rightarrow WZ \rightarrow aa\ell\ell$ 2j/1J 2 e, µ _ 20.3 ATLAS-CONF-2014-039 LRSM $W'_{P} \rightarrow t\overline{b}$ 1 e.u 2 b. 0-1 i Yes 14.3 ATLAS-CONF-2013-050 1.84 Te\ LRSM $W'_P \rightarrow t\overline{b}$ 20.3 to be submitted to EPJC 0 e.u > 1 b. 1 J_ 1.77 Te\ CI qqqq 2 i 4.8 7.6 TeV $\eta = +1$ 1210.1718 5 CI qqll 2 e.u 20.3 **21.6 TeV** $\eta_{LL} = -1$ ATLAS-CONF-2014-030 $2 e, \mu$ (SS) $\geq 1 b, \geq 1 j$ 3.3 TeV ATLAS-CONF-2013-051 CL mutt Yes 14.3 |C| = 1DM EFT D5 operator (Dirac) 0 e, µ 1-2 j Yes 10.5 731 GeV at 90% CL for m(x) < 80 GeV ATLAS-CONF-2012-147 EFT D9 operator (Dirac) 0 e, µ $1 J_{i} \leq 1 j$ Yes 20.3 2 4 TeV at 90% CL for m(x) < 100 GeV 1309.4017 Scalar LQ 1st gen 2 e $\geq 2 j$ 660 GeV $\beta = 1$ _ 1.0 LQ mas 1112,4828 g Scalar LQ 2nd gen 2μ $\geq 2j$ LQ mas 685 GeV $\beta = 1$ 1.0 1203.3172 Scalar LQ 3rd gen $1 \, e, \mu, 1 \, \tau$ 1 b, 1 j 4.7 LQ mass 534 GeV $\beta = 1$ 1303.0526 Vector-like quark $TT \rightarrow Ht + X$ $\geq 2 b, \geq 4 j$ T in (T,B) doublet $1 e, \mu$ Yes 14.3 790 GeV ATLAS-CONF-2013-018 Vector-like quark $TT \rightarrow Wb + X$ 1 e, µ isospin singlet ATLAS-CONF-2013-060 > 1 b. > 3 iYes 14.3 670 GeV Vector-like guark $TT \rightarrow Zt + X$ 2/≥3 e, µ 20.3 T in (T,B) doublet ATLAS-CONF-2014-036 >2/>1 h 735 Ge\ mass Vector-like quark $BB \rightarrow Zb + X$ 2/≥3 e,µ ≥2/≥1 b 20.3 B in (B,Y) doublet ATLAS-CONF-2014-036 _ 755 GeV Vector-like quark $BB \rightarrow Wt + X \ 2 \ e, \mu \text{ (SS)} \ge 1 \ b, \ge 1 \ j \ Yes$ B in (T,B) doublet ATLAS-CONF-2013-051 14.3 720 Ge\ Excited quark $a^* \rightarrow a\gamma$ 1 i 20.3 only u^* and d^* , $\Lambda = m(q^*)$ 1ν 1309 3230 _ 3.5 TeV Excited quark $q^* \rightarrow qg$ 2 j 4.09 TeV only u^* and d^* , $\Lambda = m(q^*)$ 20.3 to be submitted to PRD Excited quark $b^* \rightarrow Wt$ 1 or 2 e, µ 1 b, 2 j or 1 j Yes 4.7 870 GeV left-handed coupling h* mass 1301 1583 Excited lepton $\ell^* \rightarrow \ell \gamma$ $2 e, \mu, 1 \gamma$ 13.0 $\Lambda = 2.2 \text{ TeV}$ 1308.1364 LSTC $a_T \rightarrow W\gamma$ $1 e. u. 1 \gamma$ Yes 20.3 960 GeV to be submitted to PLB LRSM Majorana v 2 e, µ 2 i 21 N⁰ mass 1.5 TeV $m(W_R) = 2$ TeV, no mixing 1203 5420 Other Type III Seesaw 2 e. µ 5.8 $|V_{e}|=0.055, |V_{u}|=0.063, |V_{\tau}|=0$ ATLAS-CONF-2013-019 Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ 2 e, µ (SS) H^{±±} mass 409 GeV DY production. BR $(H^{\pm\pm} \rightarrow \ell \ell)=1$ 47 1210.5070 Multi-charged particles 4.4 multi-charged particle mass 490 GeV DY production, |q| = 4e1301.5272 Magnetic monopoles 2.0 862 GeV DY production, $|g| = 1g_D$ 1207.6411 √s = 8 TeV $\sqrt{s} = 7 \text{ TeV}$ 10^{-1} 1 10

*Only a selection of the available mass limits on new states or phenomena is shown.

ATLAS Preliminary

 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

Mass scale [TeV]

The Higgs Boson

Higgs Boson Discovery

- Both ATLAS and CMS see narrow peak at ~125 GeV in two different decay channels
- ³⁷ Significant signals in two additional channels

Is it the Standard Model Higgs boson?

- spin and parity consistent with 0+
- Decay rates consistent with SM prediction
 - Within current uncertainties of 20-50%
- But: many BSM models include Higgs-like particles
 - Eg, SUSY has multiple higgs
- 38 Need for precision measurements to determine nature of Higgs

Summary of Run-1

- LHC machine and detector worked very well!
 Machine ran at ~half the design energy
- >600 papers published in the past 5 years
 - Surprise #1: Found a new particle!!
 - The only fundamental scalar in Nature (so far)
 - Plays critical role in Standard Model
 - >2500 citations of observation paper per experiment
 - Surprise #2: No other new particles found!
 - No evidence for DM candidate
 - No sign of Supersymmetry or any other new physics yet
 - Intense dialogue between theorists and experimentalists
 >1000's of citations for SUSY search papers

LHC Roadmap

Run 1: $\sqrt{s}=7-8$ TeV, $\int Ldt=25$ fb⁻¹, pileup $\mu \approx 20$ LS1: phase 0 upgrade

Run 2: √s≈13 TeV, ∫Ldt≈120 fb⁻¹, µ≈43

LS2: phase 1 upgrade

Run 3: √s≈14 TeV, ∫Ldt≈350 fb⁻¹, µ=50-80

LS3: phase 2 upgrade

HL-LHC: √s≈14 TeV, ∫Ldt≈3000 fb⁻¹, µ≈140-200

(updated by CERN: Dec. 2nd 2013)

Detector Upgrades

- Detectors need to be upgraded to cope with higher luminosity:
 - Improve trigger capabilities
 - better discriminate the desired signal events from background as early as possible in trigger decision
 - Upgrade and/or replace detectors if they:
 - Cannot handle higher rate due to bandwidth limitations
 - Suffer from radiation damage making them less efficient

Detector Upgrades: Phase-0, Phase-I and Phase-II

- Phase-0 (now) ATLAS
 - 4th Si Pixel layer (IBL)
 - Complete muon coverage
 - Repairs (TRT, LAr and Tile)
 - New beampipe and infrastructure updates
- Phase-I (~2018)
 - Fast Track Trigger (FTK)
 - Muon New Small Wheel (NSW)
 - LAr cal. electronics
- Phase-II (~2022)
 - New pixel and strip tracker
 - Calorimeter
 - Muon system
 - Trigger system
- 42 Computing

- Phase-0 (now) CMS
 - Complete muon coverage
 - Colder tracker
 - Photodetectors in HCAL
 - New beampipe and infrastructure updates
- Phase-I (~2018)
 - New Si pixel tracker
 - L1 trigger upgrade
 - HCAL electronics
- Phase-II (~2022)
 - New pixel and strip tracker
 - Calorimeter
 - Muon system
 - Trigger system
 - Computing

Run-2 Physics Cross Sections

- Increase in cross section by factor ~10 for M~2 TeV
- With a few fb⁻¹ discovery of TeV scale particles possible
 - Expect 10 fb⁻¹ by end of this year

Future Prospects for SUSY Discovery

- Run 2 at LHC will approximately double mass reach compared to Run 1
- Significant further increase with 3000 fb⁻¹
- Similar improvements of reach for DM (model dependent)

Higgs Boson Coupling Measurements

Higgs Snowmass report (arXiv:1310.8361) Deviation from SM due to particles with M=1 TeV

Model	κ_V	κ_b	κ_{γ}
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

Observable number of Higgs events/exp

	Run-1	HL-LHC
$H \rightarrow 4$ lepton s	20	4,000
$H \to \gamma \gamma$	350	130,000
VBF H→ττ	50	20,000

Current Results on signal strength compared to SM

Higgs studies have only just begun:

- Current precision on about 20-50%
- Need ~3% precision on couplings to probe TeV scale particles
- HL-LHC will increase Higgs dataset dramatically

Future Higgs Boson Coupling Measurements

CMS projections for coupling precision (arXiv:1307.7135)

$L (fb^{-1})$	κ_{γ}	κ_W	κ _Z	κ _g	κ _b	κ _t	$\kappa_{ au}$	$\kappa_{Z\gamma}$	$\kappa_{\mu\mu}$	BR _{SM}
300	[5, 7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[23, 23]	[14, 18]
3000	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4,7]	[7, 10]	[2, 5]	[10, 12]	[8, 8]	[7, 11]

- Future LHC runs will enable precision Higgs physics
 - Couplings measured with 2-8% precision
 - Access to rare decays
 - E.g. how does it couple to muons?

Conclusions I: The Past

- The LHC worked fantastically well
 - after >20 years of design and construction
- Found a new particle consistent with the Higgs boson
 - Program of property measurements is starting
 - With current precision fully consistent with SM Higgs boson
- No other new particles found yet

Conclusions II: The Future

- This was just the beginning!!!
 - High energy running starting this month ($\sqrt{s}\approx 13$ TeV)
 - Increase luminosity by factor \sim 15 by 2022
 - ... and another factor 10 by 2030
 - Major detector upgrade program under way
 - Will probe
 - SUSY, DM and exotics for masses in the multi-TeV range
 - Higgs couplings with 2-8% precision
- LHC has great chance of finding new physics
 - Have worked on completing the SM for >40 years...
 - The Higgs boson has completed the picture

What will we find?